亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deformation and breakup of a ferrofluid droplet in shear flow under magnetic field

物理 分手 磁流体 磁场 剪切流 机械 变形(气象学) 剪切(地质) 经典力学 流量(数学) 复合材料 材料科学 量子力学 气象学
作者
Yuto Kawabata,Shunichi Ishida,Yohsuke Imai
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:2
标识
DOI:10.1063/5.0203057
摘要

Effects of magnetic field applied perpendicular to a shear plane in shear flow on the deformation of a ferrofluid droplet are numerically investigated. The boundary integral method is employed to solve the two-phase Stokes flow under a uniform magnetic field. When the magnetic field is applied perpendicular to the shear plane, the deformation of the droplet in the shear plane decreases. The magnetic field causes the droplet to elongate in the y-direction, and its cross-sectional radius in shear plane decreases. Consequently, the apparent capillary number in the shear plane decreases, thereby suppressing the droplet deformation. Droplet breakup is also suppressed by imposing a magnetic field perpendicular to the shear plane, thereby increasing the critical capillary numbers. The critical capillary numbers for the magnetic Bond numbers Bo = 2.0 and 4.0 increase to approximately 110% and 130%, respectively, than those without magnetic field. Furthermore, an equation for the theoretical prediction of the droplet deformation under a magnetic field in shear flow is presented, which is based on the small deformation theory, the decrease in the cross-sectional radius, and the boundary conditions at the droplet interface. The theoretical prediction agrees well with the numerical results for the variation in the magnetic susceptibility of the droplet as well as the viscosity ratio between the external fluid and the ferrofluid droplet under a small deformation. The critical capillary numbers under a magnetic field can also be predicted by using the numerical results without a magnetic field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助健忘的板凳采纳,获得10
1秒前
xuanxuan发布了新的文献求助10
1秒前
3秒前
pyh01完成签到 ,获得积分10
15秒前
万能图书馆应助xuanxuan采纳,获得10
16秒前
健忘的板凳完成签到,获得积分10
16秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
ceeray23应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
ceeray23应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
18秒前
我必做出来完成签到,获得积分10
26秒前
科研通AI6应助烂漫向卉采纳,获得30
27秒前
小蘑菇应助alex采纳,获得10
30秒前
33秒前
34秒前
yuanyuan发布了新的文献求助10
37秒前
Yii发布了新的文献求助10
39秒前
miki完成签到 ,获得积分10
40秒前
43秒前
热情归尘完成签到,获得积分20
44秒前
luchener完成签到,获得积分20
49秒前
MRD完成签到,获得积分10
50秒前
香蕉觅云应助yuanyuan采纳,获得10
53秒前
小年小少发布了新的文献求助10
53秒前
55秒前
傅家庆完成签到 ,获得积分10
56秒前
追风发布了新的文献求助10
58秒前
小年小少完成签到,获得积分10
1分钟前
柔弱的书翠完成签到,获得积分10
1分钟前
梵高完成签到,获得积分10
1分钟前
1分钟前
1分钟前
热情归尘发布了新的文献求助10
1分钟前
迷人宛亦完成签到,获得积分10
1分钟前
优雅的笑阳完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898