Promoting Automatic Detection of Road Damage: A High-Resolution Dataset, a New Approach, and a New Evaluation Criterion

高分辨率 计算机科学 可靠性工程 工程类 遥感 地质学
作者
Tianxiang Yin,Wei Zhang,Jinqiao Kou,Ningzhong Liu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 2472-2484 被引量:3
标识
DOI:10.1109/tase.2024.3379945
摘要

Using deep learning to detect road damage can significantly improve the effectiveness of road maintenance. To promote the development of road damage detection, we construct a high-resolution road damage data set named Asphalt Road Surface Disease Dataset(ARSDD), comprising 2297 images used in a real-world project. The annotation process is under the guidance of the road maintenance department, and it has more accurate labels and appropriate damage types. Most current road damage detection models are anchor-based, where one anchor corresponds to one sample. Therefore, these models are primarily limited by the setting of pre-defined anchors. Road damages have more extreme aspect ratios and scales than natural objects, and the general settings of anchors are inappropriate for road damage. In this paper, we propose a road damage detection model based on an improved adaptive training sample selection strategy, which can reduce manual anchor settings and is suitable for road damage detection. Moreover, as slight road damages tend to lose information during down-sampling, a cross-layer attention feature pyramid network is designed to compensate for this degradation in the spatial dimensions. While testing the ARSDD dataset, we find that the evaluation criterion for general object detection is unsuitable for road damage detection and propose a new post-processing method and diagonal-based evaluation criterion according to the characteristics of road damage. We validate our model using the 2018 Road Damage Dataset and our proposed dataset, and the results demonstrate the superiority of our model in road damage detection. Note to Practitioners —This paper was motivated by the problem of road damage detection, which is the key of intelligent road maintenance system. We comprehensively analyze the shortcomings of current publicly available content about road damage detection, including detection datasets, algorithms and evaluation metrics. Correspondingly, we first construct a road damage dataset from the real-world project, which contains six common categories of disease and is annotated under the guidance of the road maintenance department. Then we propose a detection model based on computer vision technology to improve the accuracy of damage detection. Finally, we propose a new post-processing method and a diagonal-based evaluation criterion based on the detection boxes. Any practitioner working on pavement inspection systems can use our released dataset and method to build a better-performing automated inspection system. In future research, we will try more refined inspection schemes and evaluation indicators, such as meshing the road surface images and evaluating the quality of the road based on the inspection results of each mesh.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aurora完成签到 ,获得积分10
1秒前
yar应助川上富江采纳,获得10
1秒前
1秒前
2秒前
Orange应助123采纳,获得10
4秒前
4秒前
WC发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
7秒前
狍狍完成签到,获得积分10
8秒前
雨碎寒江发布了新的文献求助10
8秒前
跳跃的夜天完成签到,获得积分10
9秒前
c仔叻完成签到,获得积分20
9秒前
白芷当归发布了新的文献求助10
9秒前
10秒前
10秒前
WSGQT完成签到 ,获得积分10
11秒前
小白发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
lxdfrank发布了新的文献求助10
14秒前
maodou发布了新的文献求助10
15秒前
17秒前
妮妮发布了新的文献求助10
18秒前
活力小熊猫完成签到,获得积分20
18秒前
CipherSage应助shanshan采纳,获得10
21秒前
幸运海星完成签到,获得积分10
21秒前
小王发布了新的文献求助30
22秒前
小马甲应助白芷当归采纳,获得10
22秒前
maodou完成签到,获得积分10
22秒前
明亮的蓉关注了科研通微信公众号
22秒前
23秒前
搜集达人应助Cloud采纳,获得10
23秒前
Orange应助c仔叻采纳,获得30
23秒前
25秒前
英姑应助温柔的吐司采纳,获得10
25秒前
hyhj发布了新的文献求助10
26秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463248
求助须知:如何正确求助?哪些是违规求助? 3056670
关于积分的说明 9053304
捐赠科研通 2746544
什么是DOI,文献DOI怎么找? 1507004
科研通“疑难数据库(出版商)”最低求助积分说明 696248
邀请新用户注册赠送积分活动 695849