An integrated deep neural network model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data

计算机科学 人工智能 时间序列 人工神经网络 系列(地层学) 模式识别(心理学) 深度学习 机器学习 数据挖掘 地质学 古生物学
作者
Mohammadreza Ahmadzadeh,Seyed Mehdi Zahrai,Maryam Bitaraf
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:11
标识
DOI:10.1177/14759217241239041
摘要

Introducing deep learning algorithms into the field of structural health monitoring (SHM) has contributed to the automatic extraction of damage-sensitive features, but the type and architecture of these algorithms are still in dispute. This paper proposes a hybrid deep learning framework entitled time-distributed one-dimensional convolutional neural network (1D CNN) long short-term memory (LSTM) model, which utilizes raw multisensor time histories to detect structural damages. Using a sliding window that moves along the temporal dimension, the multisensor data are first segmented into subsequences. The 1D CNN layers are simultaneously applied to each subsequence to extract damage-sensitive features from row data samples. These features are then fed into the LSTM layers to extract temporal features between subsequences. As the final step, these extracted features are classified using fully connected layers. In order to assess the performance of this model, a numerical model of a high-rise frame with nonlinear members is used. This hybrid model is assumed to identify the location of damages to this frame. In order to assess the proposed model with a real-world structure, a well-known benchmark building is employed to identify damage patterns by this deep hybrid neural network. A set of metrics related to the performance of the model is measured and evaluated. It is found that the model has an average accuracy of above 96.6% in localizing damage in the numerical structure and above 99.6% in detecting each damage pattern in the experimental building. The results indicate that the proposed model can be applied effectively to the SHM of different structural systems with different damage patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
LYF完成签到,获得积分10
4秒前
浮游应助知性的安波采纳,获得10
4秒前
5秒前
6秒前
wshwx完成签到,获得积分10
6秒前
撒西不理完成签到,获得积分10
8秒前
酷波er应助嘿嘿嘿采纳,获得10
9秒前
CipherSage应助12345采纳,获得10
9秒前
9秒前
LYF发布了新的文献求助10
9秒前
忧郁小刺猬完成签到,获得积分10
11秒前
陈奕迅完成签到,获得积分10
11秒前
12秒前
12秒前
wangdh发布了新的文献求助10
14秒前
开心可乐不脆皮完成签到 ,获得积分20
16秒前
忧虑的花卷完成签到,获得积分10
16秒前
坚强夜白发布了新的文献求助10
17秒前
洁净的易巧完成签到,获得积分10
19秒前
Sophia发布了新的文献求助10
19秒前
19秒前
20秒前
SciGPT应助神勇的夜山采纳,获得10
20秒前
美满向薇发布了新的文献求助10
21秒前
天才小能喵完成签到 ,获得积分0
23秒前
搞笑羽球人完成签到,获得积分10
23秒前
酷波er应助忱麓裔采纳,获得10
25秒前
蓝天应助晴朗的蓝采纳,获得10
25秒前
25秒前
大模型应助王明磊采纳,获得10
25秒前
28秒前
dw完成签到,获得积分10
28秒前
VV完成签到,获得积分10
29秒前
乐乐完成签到,获得积分10
30秒前
Azizbek发布了新的文献求助10
30秒前
30秒前
wanci应助Sophia采纳,获得10
31秒前
今后应助ziying126采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546674
求助须知:如何正确求助?哪些是违规求助? 3977829
关于积分的说明 12317357
捐赠科研通 3646236
什么是DOI,文献DOI怎么找? 2008079
邀请新用户注册赠送积分活动 1043641
科研通“疑难数据库(出版商)”最低求助积分说明 932363