An integrated deep neural network model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data

计算机科学 人工智能 时间序列 人工神经网络 系列(地层学) 模式识别(心理学) 深度学习 机器学习 数据挖掘 地质学 古生物学
作者
Mohammadreza Ahmadzadeh,Seyed Mehdi Zahrai,Maryam Bitaraf
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:11
标识
DOI:10.1177/14759217241239041
摘要

Introducing deep learning algorithms into the field of structural health monitoring (SHM) has contributed to the automatic extraction of damage-sensitive features, but the type and architecture of these algorithms are still in dispute. This paper proposes a hybrid deep learning framework entitled time-distributed one-dimensional convolutional neural network (1D CNN) long short-term memory (LSTM) model, which utilizes raw multisensor time histories to detect structural damages. Using a sliding window that moves along the temporal dimension, the multisensor data are first segmented into subsequences. The 1D CNN layers are simultaneously applied to each subsequence to extract damage-sensitive features from row data samples. These features are then fed into the LSTM layers to extract temporal features between subsequences. As the final step, these extracted features are classified using fully connected layers. In order to assess the performance of this model, a numerical model of a high-rise frame with nonlinear members is used. This hybrid model is assumed to identify the location of damages to this frame. In order to assess the proposed model with a real-world structure, a well-known benchmark building is employed to identify damage patterns by this deep hybrid neural network. A set of metrics related to the performance of the model is measured and evaluated. It is found that the model has an average accuracy of above 96.6% in localizing damage in the numerical structure and above 99.6% in detecting each damage pattern in the experimental building. The results indicate that the proposed model can be applied effectively to the SHM of different structural systems with different damage patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pppprrrrrrr完成签到,获得积分10
1秒前
健壮的烨华完成签到,获得积分10
2秒前
lalaland完成签到,获得积分10
2秒前
fanssw完成签到 ,获得积分10
2秒前
4秒前
4秒前
盐烤香鱼完成签到,获得积分10
5秒前
科研怪物完成签到,获得积分10
6秒前
KF完成签到,获得积分10
8秒前
禾薇完成签到,获得积分10
8秒前
老唐发布了新的文献求助10
8秒前
10秒前
Orange应助正常兔子采纳,获得20
10秒前
活泼的惜天完成签到,获得积分10
11秒前
大花卷完成签到,获得积分10
11秒前
情怀应助Yurrrrt采纳,获得10
11秒前
Owen应助YAMO一采纳,获得10
12秒前
团子完成签到,获得积分20
13秒前
皮皮虾完成签到,获得积分10
14秒前
14秒前
祝莞发布了新的文献求助10
16秒前
Lisa完成签到 ,获得积分10
16秒前
CodeCraft应助尹雪儿采纳,获得10
17秒前
研友_xnE65Z完成签到 ,获得积分10
17秒前
Jasper应助kang采纳,获得10
18秒前
美好中道完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
传奇3应助Mano采纳,获得10
21秒前
ZS完成签到,获得积分10
21秒前
21秒前
不散的和弦完成签到,获得积分10
22秒前
22秒前
烟花应助小包采纳,获得10
22秒前
23秒前
guyuefanxing完成签到,获得积分20
25秒前
我是老大应助奶油冰淇淋采纳,获得10
25秒前
红豆小猫发布了新的文献求助10
26秒前
汉堡包应助喵喵采纳,获得10
27秒前
正常兔子发布了新的文献求助20
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089