An integrated deep neural network model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data

计算机科学 人工智能 时间序列 人工神经网络 系列(地层学) 模式识别(心理学) 深度学习 机器学习 数据挖掘 地质学 古生物学
作者
Mohammadreza Ahmadzadeh,Seyed Mehdi Zahrai,Maryam Bitaraf
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:11
标识
DOI:10.1177/14759217241239041
摘要

Introducing deep learning algorithms into the field of structural health monitoring (SHM) has contributed to the automatic extraction of damage-sensitive features, but the type and architecture of these algorithms are still in dispute. This paper proposes a hybrid deep learning framework entitled time-distributed one-dimensional convolutional neural network (1D CNN) long short-term memory (LSTM) model, which utilizes raw multisensor time histories to detect structural damages. Using a sliding window that moves along the temporal dimension, the multisensor data are first segmented into subsequences. The 1D CNN layers are simultaneously applied to each subsequence to extract damage-sensitive features from row data samples. These features are then fed into the LSTM layers to extract temporal features between subsequences. As the final step, these extracted features are classified using fully connected layers. In order to assess the performance of this model, a numerical model of a high-rise frame with nonlinear members is used. This hybrid model is assumed to identify the location of damages to this frame. In order to assess the proposed model with a real-world structure, a well-known benchmark building is employed to identify damage patterns by this deep hybrid neural network. A set of metrics related to the performance of the model is measured and evaluated. It is found that the model has an average accuracy of above 96.6% in localizing damage in the numerical structure and above 99.6% in detecting each damage pattern in the experimental building. The results indicate that the proposed model can be applied effectively to the SHM of different structural systems with different damage patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WAN发布了新的文献求助10
1秒前
6121发布了新的文献求助10
1秒前
雪白凌翠完成签到,获得积分10
1秒前
三金大王完成签到,获得积分10
1秒前
2秒前
考博圣体发布了新的文献求助10
2秒前
lhy33966完成签到,获得积分10
3秒前
3秒前
Ava应助科研小乞丐采纳,获得10
3秒前
一一完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
Murphy_H完成签到,获得积分10
6秒前
自然的冷珍完成签到,获得积分20
7秒前
小超完成签到,获得积分10
7秒前
yss发布了新的文献求助10
7秒前
8秒前
8秒前
赘婿应助WYB采纳,获得30
8秒前
昵称发布了新的文献求助10
9秒前
脑洞疼应助负责的寒梅采纳,获得30
9秒前
9秒前
yyh发布了新的文献求助10
9秒前
10秒前
大胆冰岚完成签到,获得积分10
10秒前
仁仁仁完成签到,获得积分10
10秒前
yulian发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
Joy完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
Hedou发布了新的文献求助10
12秒前
研友_VZG7GZ应助Skuld采纳,获得10
13秒前
WAN完成签到,获得积分20
14秒前
只只发布了新的文献求助10
15秒前
hehsk发布了新的文献求助10
15秒前
15秒前
思源应助Daria采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088946
求助须知:如何正确求助?哪些是违规求助? 4303807
关于积分的说明 13412545
捐赠科研通 4129492
什么是DOI,文献DOI怎么找? 2261479
邀请新用户注册赠送积分活动 1265554
关于科研通互助平台的介绍 1200181