An integrated deep neural network model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data

计算机科学 人工智能 时间序列 人工神经网络 系列(地层学) 模式识别(心理学) 深度学习 机器学习 数据挖掘 地质学 古生物学
作者
Mohammadreza Ahmadzadeh,Seyed Mehdi Zahrai,Maryam Bitaraf
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217241239041
摘要

Introducing deep learning algorithms into the field of structural health monitoring (SHM) has contributed to the automatic extraction of damage-sensitive features, but the type and architecture of these algorithms are still in dispute. This paper proposes a hybrid deep learning framework entitled time-distributed one-dimensional convolutional neural network (1D CNN) long short-term memory (LSTM) model, which utilizes raw multisensor time histories to detect structural damages. Using a sliding window that moves along the temporal dimension, the multisensor data are first segmented into subsequences. The 1D CNN layers are simultaneously applied to each subsequence to extract damage-sensitive features from row data samples. These features are then fed into the LSTM layers to extract temporal features between subsequences. As the final step, these extracted features are classified using fully connected layers. In order to assess the performance of this model, a numerical model of a high-rise frame with nonlinear members is used. This hybrid model is assumed to identify the location of damages to this frame. In order to assess the proposed model with a real-world structure, a well-known benchmark building is employed to identify damage patterns by this deep hybrid neural network. A set of metrics related to the performance of the model is measured and evaluated. It is found that the model has an average accuracy of above 96.6% in localizing damage in the numerical structure and above 99.6% in detecting each damage pattern in the experimental building. The results indicate that the proposed model can be applied effectively to the SHM of different structural systems with different damage patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助jaslek采纳,获得10
1秒前
cai完成签到,获得积分10
1秒前
希望天下0贩的0应助ug采纳,获得10
2秒前
Yinging发布了新的文献求助10
3秒前
醉烟雨发布了新的文献求助20
4秒前
yang完成签到,获得积分10
4秒前
满意尔安完成签到,获得积分10
5秒前
求大佬帮助完成签到,获得积分10
5秒前
5秒前
谦让玲发布了新的文献求助20
6秒前
大个应助lily采纳,获得10
7秒前
lyon完成签到 ,获得积分10
8秒前
qoq完成签到,获得积分10
8秒前
10秒前
10秒前
赵川完成签到 ,获得积分10
11秒前
可爱的函函应助QYW采纳,获得100
13秒前
ASHhan111完成签到,获得积分10
16秒前
香蕉觅云应助风中的以珊采纳,获得10
17秒前
17秒前
Owen应助复杂的如萱采纳,获得10
18秒前
18秒前
严昌完成签到,获得积分20
19秒前
晨曦发布了新的文献求助10
19秒前
勾股定理完成签到,获得积分10
19秒前
奋斗魂幽完成签到 ,获得积分0
19秒前
Yu完成签到,获得积分10
19秒前
文成发布了新的文献求助20
20秒前
CC完成签到,获得积分10
21秒前
可靠的书桃应助小星星采纳,获得10
21秒前
牛肉面完成签到,获得积分10
21秒前
威尔逊2完成签到,获得积分10
21秒前
脑洞疼应助Harlotte采纳,获得10
22秒前
严昌发布了新的文献求助10
23秒前
Ava应助1123432412采纳,获得10
23秒前
24秒前
25秒前
ONE完成签到,获得积分10
25秒前
风中的以珊完成签到,获得积分10
26秒前
Layli发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023