清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An integrated deep neural network model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data

计算机科学 人工智能 时间序列 人工神经网络 系列(地层学) 模式识别(心理学) 深度学习 机器学习 数据挖掘 地质学 古生物学
作者
Mohammadreza Ahmadzadeh,Seyed Mehdi Zahrai,Maryam Bitaraf
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:24 (1): 447-465 被引量:37
标识
DOI:10.1177/14759217241239041
摘要

Introducing deep learning algorithms into the field of structural health monitoring (SHM) has contributed to the automatic extraction of damage-sensitive features, but the type and architecture of these algorithms are still in dispute. This paper proposes a hybrid deep learning framework entitled time-distributed one-dimensional convolutional neural network (1D CNN) long short-term memory (LSTM) model, which utilizes raw multisensor time histories to detect structural damages. Using a sliding window that moves along the temporal dimension, the multisensor data are first segmented into subsequences. The 1D CNN layers are simultaneously applied to each subsequence to extract damage-sensitive features from row data samples. These features are then fed into the LSTM layers to extract temporal features between subsequences. As the final step, these extracted features are classified using fully connected layers. In order to assess the performance of this model, a numerical model of a high-rise frame with nonlinear members is used. This hybrid model is assumed to identify the location of damages to this frame. In order to assess the proposed model with a real-world structure, a well-known benchmark building is employed to identify damage patterns by this deep hybrid neural network. A set of metrics related to the performance of the model is measured and evaluated. It is found that the model has an average accuracy of above 96.6% in localizing damage in the numerical structure and above 99.6% in detecting each damage pattern in the experimental building. The results indicate that the proposed model can be applied effectively to the SHM of different structural systems with different damage patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
川川完成签到 ,获得积分10
20秒前
老迟到的友桃完成签到 ,获得积分10
27秒前
sweetrumors完成签到,获得积分10
30秒前
em0发布了新的文献求助30
37秒前
48秒前
ldtbest0525发布了新的文献求助10
54秒前
酷酷的数据线完成签到,获得积分10
1分钟前
em0完成签到,获得积分10
1分钟前
lx发布了新的文献求助10
1分钟前
专一的忆寒完成签到,获得积分10
2分钟前
lx完成签到 ,获得积分20
2分钟前
傻瓜完成签到 ,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
2分钟前
sissiarno完成签到,获得积分0
2分钟前
淡淡菠萝完成签到 ,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
科研通AI5应助嘟嘟哒采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
白天亮完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
小朱马完成签到,获得积分10
5分钟前
5分钟前
小朱马发布了新的文献求助10
5分钟前
万能图书馆应助cc采纳,获得10
5分钟前
arniu2008完成签到,获得积分10
5分钟前
5分钟前
cc发布了新的文献求助10
6分钟前
火星上惜天完成签到 ,获得积分10
6分钟前
帅气的安柏完成签到,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
观众完成签到,获得积分10
7分钟前
yu完成签到 ,获得积分10
7分钟前
Ava应助lx采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
9分钟前
思源应助科研通管家采纳,获得10
9分钟前
Cumin完成签到 ,获得积分10
9分钟前
豆丁小猫完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255132
求助须知:如何正确求助?哪些是违规求助? 4417795
关于积分的说明 13751714
捐赠科研通 4290711
什么是DOI,文献DOI怎么找? 2354326
邀请新用户注册赠送积分活动 1350941
关于科研通互助平台的介绍 1311305