已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced machine learning approach for effective prediction of IgA nephropathy patients with severe proteinuria based on clinical data

蛋白尿 肾病 医学 计算机科学 机器学习 人工智能 内科学 内分泌学 糖尿病
作者
Yaozhe Ying,Luhui Wang,Shuqing Ma,Yun Zhu,Simin Ye,Nan Jiang,Zongyuan Zhao,Chenfei Zheng,Yangping Shentu,YunTing Wang,Duo Li,Ji Zhang,Chaosheng Chen,Liyao Huang,Deshu Yang,Ying Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108341-108341 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108341
摘要

IgA Nephropathy (IgAN) is a disease of the glomeruli that may eventually lead to chronic kidney disease or kidney failure. The signs and symptoms of IgAN nephropathy are usually not specific enough and are similar to those of other glomerular or inflammatory diseases. This makes a correct diagnosis more difficult. This study collected data from a sample of adult patients diagnosed with primary IgAN at the First Affiliated Hospital of Wenzhou Medical University, with proteinuria ≥1 g/d at the time of diagnosis. Based on these samples, we propose a machine learning framework based on weIghted meaN oF vectOrs (INFO). An enhanced COINFO algorithm is proposed by merging INFO, Cauchy Mutation (CM) and Oppositional Based Learning (OBL) strategies. At the same time, COINFO and Support Vector Machine (SVM) were integrated to construct the BCOINFO-SVM framework for IgAN diagnosis and prediction. First, the proposed enhanced COINFO is tested on the IEEE CEC2017 benchmark problems, and the results prove its efficient optimization ability and convergence accuracy. Furthermore, the feature selection capability of the proposed method is verified on the UCI public medical datasets. Finally, the auxiliary diagnostic experiment was carried out through IgAN real sample data. The results demonstrate that the proposed BCOINFO-SVM can screen out essential features such as High-Density Lipoprotein (HDL), Uric Acid (UA), Cardiovascular Disease (CVD), Hypertension and Diabetes. At the same time, the accuracy of the BCOINFO-SVM model can reach 98.56%, the sensitivity reaches 96.08%, and the specificity reaches 97.73%. It can become a potential auxiliary diagnostic model of IgAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小树完成签到,获得积分10
1秒前
2秒前
2秒前
不安的蓝血完成签到,获得积分20
4秒前
6秒前
徐小树发布了新的文献求助10
6秒前
10秒前
14秒前
三石SUN发布了新的文献求助10
15秒前
凹凸先森应助机智的砖家采纳,获得20
18秒前
18秒前
18秒前
徐小树发布了新的文献求助10
19秒前
调皮的千万完成签到,获得积分10
21秒前
Heidi完成签到 ,获得积分10
23秒前
long0809发布了新的文献求助10
36秒前
37秒前
机智的砖家完成签到,获得积分10
38秒前
给我一瓶芬达完成签到 ,获得积分10
38秒前
传奇3应助拉长的博超采纳,获得10
41秒前
徐小树发布了新的文献求助10
41秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
43秒前
李爱国应助科研通管家采纳,获得10
43秒前
脑洞疼应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
小二郎应助科研通管家采纳,获得30
44秒前
无花果应助科研通管家采纳,获得10
44秒前
44秒前
温暖涫完成签到 ,获得积分10
44秒前
乐乐应助科研通管家采纳,获得10
44秒前
wanci应助科研通管家采纳,获得30
44秒前
46秒前
8R60d8应助fishcool采纳,获得10
48秒前
48秒前
严汲完成签到 ,获得积分10
48秒前
bkagyin应助sci一级选手采纳,获得10
49秒前
mxtsusan发布了新的文献求助10
49秒前
鸭蛋完成签到 ,获得积分10
50秒前
活力的泥猴桃完成签到 ,获得积分10
51秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330247
求助须知:如何正确求助?哪些是违规求助? 2959843
关于积分的说明 8597367
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444234
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656628