Spatial-Aware Learning in Feature Embedding and Classification for One-Stage 3-D Object Detection

空间语境意识 计算机科学 嵌入 空间分析 人工智能 特征(语言学) 推论 模式识别(心理学) 背景(考古学) 目标检测 对象(语法) 一般化 上下文图像分类 机器学习 数学 图像(数学) 语言学 哲学 古生物学 数学分析 统计 生物
作者
Yiqiang Wu,Weiping Xiao,Jiantao Gao,Chang Liu,Qin Yu,Yan Peng,Xiaomao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12
标识
DOI:10.1109/tgrs.2024.3389984
摘要

One-stage 3D object detection, known for its simplicity and high-speed inference, is attracting increasing attention in autonomous driving scenarios. However, current one-stage detectors tend to perform sub-optimally compared to two-stage competitors. Our experimental findings suggest that one-stage detectors underperform due to the underutilization of spatial information in feature embedding and classification. Concretely, the spatial context is severely lost during feature propagation, inducing distorted spatial awareness. On the other hand, category recognition relies on the full utilization of spatial information, which is neglected by current detectors. This inadequate spatial awareness of the classification branch can exacerbate misclassification. To address these issues, we propose Spatial-aware Learning in Feature Embedding and Classification for One-stage 3D Object Detection (SLDet). Specifically, to restore the distorted spatial awareness, Category-wise Spatial Augmentation (CSA) is proposed to adaptively bring the network with pre-encoding multi-scale spatial contexts. As for misclassification, Spatial Guiding Classification (SGC) is introduced to guide the classification using explicit scale information. It employs the natural scale divergences among categories to rectify misclassification. Comprehensive experiments demonstrate that SLDet efficiently utilizes spatial information and achieves newly state-of-the-art performance on both the Waymo Open Dataset and the ONCE Dataset. Furthermore, additional experiments demonstrate the excellent generalization capacity of SLDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
兴奋涵雁完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
青云完成签到,获得积分10
4秒前
hcw完成签到,获得积分10
4秒前
T田发布了新的文献求助10
4秒前
4秒前
兴奋涵雁发布了新的文献求助10
4秒前
fly完成签到,获得积分10
4秒前
ZSQ发布了新的文献求助10
4秒前
何以故人初完成签到 ,获得积分10
6秒前
CipherSage应助shirley采纳,获得30
6秒前
7秒前
Lucas应助小樱没有魔法阵采纳,获得10
10秒前
11秒前
长情的涔完成签到 ,获得积分10
11秒前
11秒前
11秒前
FashionBoy应助ZSQ采纳,获得10
11秒前
12秒前
Ava应助SILENCE采纳,获得10
13秒前
慵懒的树发布了新的文献求助10
13秒前
cutey小鲸鱼完成签到,获得积分10
14秒前
友好真发布了新的文献求助10
15秒前
15秒前
晶坚强应助花花采纳,获得10
17秒前
bob发布了新的文献求助10
17秒前
小樱没有魔法阵完成签到,获得积分10
17秒前
一区劳大完成签到 ,获得积分10
18秒前
菇菇完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309