Spatial-Aware Learning in Feature Embedding and Classification for One-Stage 3-D Object Detection

空间语境意识 计算机科学 嵌入 空间分析 人工智能 特征(语言学) 推论 模式识别(心理学) 背景(考古学) 目标检测 对象(语法) 一般化 上下文图像分类 机器学习 数学 图像(数学) 语言学 哲学 古生物学 数学分析 统计 生物
作者
Yiqiang Wu,Weiping Xiao,Jiantao Gao,Chang Liu,Qin Yu,Yan Peng,Xiaomao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12
标识
DOI:10.1109/tgrs.2024.3389984
摘要

One-stage 3D object detection, known for its simplicity and high-speed inference, is attracting increasing attention in autonomous driving scenarios. However, current one-stage detectors tend to perform sub-optimally compared to two-stage competitors. Our experimental findings suggest that one-stage detectors underperform due to the underutilization of spatial information in feature embedding and classification. Concretely, the spatial context is severely lost during feature propagation, inducing distorted spatial awareness. On the other hand, category recognition relies on the full utilization of spatial information, which is neglected by current detectors. This inadequate spatial awareness of the classification branch can exacerbate misclassification. To address these issues, we propose Spatial-aware Learning in Feature Embedding and Classification for One-stage 3D Object Detection (SLDet). Specifically, to restore the distorted spatial awareness, Category-wise Spatial Augmentation (CSA) is proposed to adaptively bring the network with pre-encoding multi-scale spatial contexts. As for misclassification, Spatial Guiding Classification (SGC) is introduced to guide the classification using explicit scale information. It employs the natural scale divergences among categories to rectify misclassification. Comprehensive experiments demonstrate that SLDet efficiently utilizes spatial information and achieves newly state-of-the-art performance on both the Waymo Open Dataset and the ONCE Dataset. Furthermore, additional experiments demonstrate the excellent generalization capacity of SLDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路问玉关注了科研通微信公众号
1秒前
1秒前
1234完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助无限的怜阳采纳,获得10
1秒前
Jerry发布了新的文献求助10
1秒前
2秒前
纯真丹秋发布了新的文献求助10
2秒前
ShengxK发布了新的文献求助10
2秒前
2秒前
Lucas应助可耐的善斓采纳,获得10
2秒前
yang发布了新的文献求助10
3秒前
3秒前
余云开发布了新的文献求助10
4秒前
4秒前
比利时光发布了新的文献求助10
5秒前
5秒前
Xiaojiu完成签到,获得积分10
6秒前
6秒前
Hzk_发布了新的文献求助30
6秒前
共享精神应助11111采纳,获得10
6秒前
6秒前
7秒前
嘻嘻哈哈发布了新的文献求助10
7秒前
Jiaowen发布了新的文献求助10
7秒前
7秒前
7秒前
111发布了新的文献求助10
7秒前
李健的小迷弟应助魏莱采纳,获得10
8秒前
8秒前
orixero应助gxt采纳,获得10
8秒前
9秒前
彭于晏应助西番雅采纳,获得10
9秒前
9秒前
nibaba完成签到,获得积分10
9秒前
9秒前
10秒前
Apollonia完成签到 ,获得积分10
11秒前
GCXH发布了新的文献求助10
11秒前
bonnieeee777完成签到,获得积分10
11秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698