材料科学
金属锂
锂(药物)
相间
固态
离子
金属
电压
纳米技术
电极
工程物理
电解质
电气工程
冶金
有机化学
医学
化学
物理化学
生物
工程类
遗传学
内分泌学
作者
Guorui Zheng,Shida Xue,Yuhang Li,Shiming Chen,Jimin Qiu,Yuchen Ji,Ming Liu,Luyi Yang
出处
期刊:Nano Energy
[Elsevier]
日期:2024-04-16
卷期号:125: 109617-109617
被引量:4
标识
DOI:10.1016/j.nanoen.2024.109617
摘要
Enhancing the interphase stability of polymer electrolytes with high-voltage cathodes is crucial for the development of high-energy-density lithium metal batteries (LMBs), especially in wearable devices area. Herein, lithium difluorophosphate (LiDFP) is incorporated into the solid polymer electrolyte of poly(ethylene oxide) (PEO) to enhance the formation of a robust cathode-electrolyte interphase (CEI) in high-voltage LiCoO2 LMBs. Through combining electrochemical measurements, spectroscopic techniques and theoretical calculations, the underlying modification mechanism is revealed. Due to its stronger anionic coordination with both polymer electrolyte chain and proton, and more oxidation-active resultant anion-coordinated polymer compared with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), LiDFP suppresses the formation of the strong acid HTFSI deriving from the deprotonated process of the terminal O-H group thus avoiding the further oxidative attack to the polymeric framework. Furthermore, under the synergetic decomposition of HDFP intermediate, the polymer-derived radical helps to reconstruct a chemo-mechanically stable and Li-conductive CEI layer, which consists of abundant LiF/Li3PO4/LixPOyFz inorganic species distributed in lithiated organic macromolecules. The in-situ constructed CEI effectively passivates catalytic sites on LiCoO2 directly against PEO, resulting in well-maintained layered structure during high-voltage cycling. The proposed interphasial chemistry that regulates CEI formation provides directive knowledge of electrolyte optimization for high-voltage solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI