To Combat Multiclass Imbalanced Problems by Aggregating Evolutionary Hierarchical Classifiers

计算机科学 多类分类 人工智能 机器学习 加权 分类器(UML) 树遍历 班级(哲学) 一般化 进化算法 数据挖掘 支持向量机 算法 数学 数学分析 放射科 医学
作者
Zhihan Ning,Zhixing Jiang,David Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3383672
摘要

Real-world datasets are often imbalanced, posing frequent challenges to canonical machine learning algorithms that assume a balanced class distribution. Moreover, the imbalance problem becomes more complicated when the dataset is multiclass. Although many approaches have been presented for imbalanced learning (IL), research on the multiclass imbalanced problem is relatively limited and deficient. To alleviate these issues, we propose a forest of evolutionary hierarchical classifiers (FEHC) method for multiclass IL (MCIL). FEHC can be seen as a classifier fusion framework with a forest structure, and it aggregates several evolutionary hierarchical multiclassifiers (EHMCs) to reduce generalization error. Specifically, a multichromosome genetic algorithm (MCGA) is designed to simultaneously select (sub)optimal features, classifiers, and hierarchical structures when generating these EHMCs. The MCGA adopts a dynamic weighting module to learn difficult classes and promote the diversity of FEHC. We also present the "stratified underbagging" (SUB) strategy to address class imbalance and the "soft tree traversal" (STT) strategy to make FEHC converge faster and better. We thoroughly evaluate the proposed algorithm using 14 multiclass imbalanced datasets with various properties. Compared with popular and state-of-the-art approaches, FEHC obtains better performance under different evaluation metrics. Codes have been made publicly available on GitHub.https://github.com/CUHKSZ-NING/FEHCClassifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
pp猪猪发布了新的文献求助10
3秒前
kk发布了新的文献求助10
3秒前
4秒前
鱼会淹死吗应助可爱多采纳,获得100
4秒前
5秒前
搜集达人应助Morton采纳,获得100
7秒前
yznfly应助WDavid采纳,获得30
7秒前
guhuijun发布了新的文献求助10
7秒前
记录吐吐发布了新的文献求助10
8秒前
8秒前
冯婷完成签到 ,获得积分10
9秒前
herotim完成签到,获得积分10
9秒前
kk发布了新的文献求助10
9秒前
nini发布了新的文献求助10
9秒前
lululu完成签到,获得积分20
9秒前
TRISTE发布了新的文献求助30
10秒前
10秒前
11秒前
听话的幼蓉完成签到,获得积分10
13秒前
xiaofeiyan发布了新的文献求助10
13秒前
kmo发布了新的文献求助10
13秒前
李健的粉丝团团长应助kk采纳,获得10
14秒前
15秒前
喔喔发布了新的文献求助10
16秒前
19秒前
萤火虫发布了新的文献求助10
19秒前
guhuijun完成签到,获得积分10
19秒前
pp猪猪完成签到,获得积分10
20秒前
20秒前
20秒前
开放的斌完成签到,获得积分20
20秒前
ssx发布了新的文献求助10
22秒前
脑洞疼应助kmo采纳,获得10
22秒前
个性傲蕾发布了新的文献求助30
23秒前
李昕123发布了新的文献求助10
24秒前
Steven发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152