To Combat Multiclass Imbalanced Problems by Aggregating Evolutionary Hierarchical Classifiers

计算机科学 多类分类 人工智能 机器学习 加权 分类器(UML) 树遍历 班级(哲学) 一般化 进化算法 数据挖掘 支持向量机 算法 数学 医学 数学分析 放射科
作者
Zhihan Ning,Zhixing Jiang,David Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3383672
摘要

Real-world datasets are often imbalanced, posing frequent challenges to canonical machine learning algorithms that assume a balanced class distribution. Moreover, the imbalance problem becomes more complicated when the dataset is multiclass. Although many approaches have been presented for imbalanced learning (IL), research on the multiclass imbalanced problem is relatively limited and deficient. To alleviate these issues, we propose a forest of evolutionary hierarchical classifiers (FEHC) method for multiclass IL (MCIL). FEHC can be seen as a classifier fusion framework with a forest structure, and it aggregates several evolutionary hierarchical multiclassifiers (EHMCs) to reduce generalization error. Specifically, a multichromosome genetic algorithm (MCGA) is designed to simultaneously select (sub)optimal features, classifiers, and hierarchical structures when generating these EHMCs. The MCGA adopts a dynamic weighting module to learn difficult classes and promote the diversity of FEHC. We also present the "stratified underbagging" (SUB) strategy to address class imbalance and the "soft tree traversal" (STT) strategy to make FEHC converge faster and better. We thoroughly evaluate the proposed algorithm using 14 multiclass imbalanced datasets with various properties. Compared with popular and state-of-the-art approaches, FEHC obtains better performance under different evaluation metrics. Codes have been made publicly available on GitHub.https://github.com/CUHKSZ-NING/FEHCClassifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
MasterE完成签到,获得积分10
3秒前
我的小伙伴应助feng采纳,获得10
3秒前
善学以致用应助feng采纳,获得10
3秒前
4秒前
4秒前
gaoww发布了新的文献求助10
4秒前
小二发布了新的文献求助10
8秒前
solobang发布了新的文献求助10
9秒前
CodeCraft应助Jocelyn7采纳,获得10
9秒前
秋之月完成签到,获得积分10
9秒前
10秒前
cheche关注了科研通微信公众号
10秒前
11秒前
科研小民工应助kento采纳,获得50
12秒前
完美世界应助小萌采纳,获得10
13秒前
13秒前
gaoww完成签到,获得积分10
13秒前
14秒前
WZ0904发布了新的文献求助10
14秒前
14秒前
lab完成签到 ,获得积分0
14秒前
小蘑菇应助今今采纳,获得10
15秒前
CodeCraft应助秋之月采纳,获得10
15秒前
I1waml完成签到 ,获得积分10
15秒前
15秒前
guygun完成签到,获得积分10
15秒前
zho发布了新的文献求助10
16秒前
独特亦旋发布了新的文献求助10
16秒前
17秒前
研友_LOqqmZ完成签到,获得积分10
18秒前
18秒前
英俊的铭应助文献查找采纳,获得10
18秒前
solobang发布了新的文献求助10
18秒前
Jasper应助老迟到的书雁采纳,获得10
21秒前
orixero应助小二采纳,获得10
21秒前
22秒前
22秒前
simple完成签到,获得积分10
22秒前
caoyy发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824