Dual-Channel Prototype Network for Few-Shot Pathology Image Classification

计算机科学 判别式 人工智能 卷积神经网络 深度学习 模式识别(心理学) 过度拟合 分类器(UML) 机器学习 特征提取 上下文图像分类 概化理论 人工神经网络 图像(数学) 统计 数学
作者
Hao Quan,Xinjia Li,Dayu Hu,Tianhang Nan,Xiaoyu Cui
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4132-4144 被引量:10
标识
DOI:10.1109/jbhi.2024.3386197
摘要

In the field of pathology, the scarcity of certain diseases and the difficulty of annotating images hinder the development of large, high-quality datasets, which in turn affects the advancement of deep learning-assisted diagnostics. Few-shot learning has demonstrated unique advantages in modeling tasks with limited data, yet explorations of this method in the field of pathology remain in the early stages. To address this issue, we present a dual-channel prototype network (DCPN), a novel few-shot learning approach for efficiently classifying pathology images with limited data. The DCPN leverages self-supervised learning to extend the pyramid vision transformer (PVT) to few-shot classification tasks and combines it with a convolutional neural network to construct a dual-channel network for extracting multi-scale, high-precision pathological features, thereby substantially enhancing the generalizability of prototype representations. Additionally, we design a soft voting classifier based on multi-scale features to further augment the discriminative power of the model in complex pathology image classification tasks. We constructed three few-shot classification tasks with varying degrees of domain shift using three publicly available pathological datasets-CRCTP, NCTCRC, and LC25000-to emulate real-world clinical scenarios. The results demonstrated that the DCPN outperformed the prototypical network across all metrics, achieving the highest accuracies in same-domain tasks-70.86% for 1-shot, 82.57% for 5-shot, and 85.2% for 10-shot setups-corresponding to improvements of 5.51%, 5.72%, and 6.81%, respectively, over the prototypical network. Notably, in the same-domain 10-shot setting, the accuracy of the DCPN (85.2%) surpassed that of the PVT-based supervised learning model (85.15%), confirming its potential to diagnose rare diseases within few-shot learning frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
时光如梭完成签到,获得积分10
2秒前
脑洞疼应助chanbao采纳,获得10
3秒前
LZJ完成签到,获得积分10
3秒前
digsr发布了新的文献求助10
4秒前
lly发布了新的文献求助10
5秒前
七七七呀发布了新的文献求助10
5秒前
爆米花应助Jackson采纳,获得10
5秒前
CodeCraft应助听雨采纳,获得10
7秒前
li发布了新的文献求助10
11秒前
11秒前
11秒前
digsr完成签到,获得积分20
12秒前
12秒前
DemonZ应助180霸总采纳,获得10
12秒前
想毕业的小橙子完成签到,获得积分10
14秒前
15秒前
智慧金刚完成签到,获得积分10
16秒前
听雨发布了新的文献求助10
16秒前
zx完成签到,获得积分10
17秒前
17秒前
18秒前
晚晚发布了新的文献求助10
18秒前
19秒前
20秒前
小米粥完成签到,获得积分10
22秒前
小元发布了新的文献求助10
22秒前
保洁王姐发布了新的文献求助10
23秒前
shaoshao86完成签到,获得积分10
24秒前
小鱼发布了新的文献求助10
24秒前
25秒前
25秒前
CKX发布了新的文献求助10
25秒前
26秒前
lly完成签到,获得积分10
27秒前
大个应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
梁自豪发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313781
求助须知:如何正确求助?哪些是违规求助? 2946137
关于积分的说明 8528534
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434028
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650691