Deep causal learning for pancreatic cancer segmentation in CT sequences

反事实思维 人工智能 可解释性 胰腺 分割 深度学习 计算机科学 因果关系(物理学) 胰腺癌 因果推理 推论 癌症 模式识别(心理学) 机器学习 医学 内科学 病理 心理学 物理 社会心理学 量子力学
作者
Chengkang Li,Yishen Mao,Shuyu Liang,Ji Li,Yuanyuan Wang,Yi Guo
出处
期刊:Neural Networks [Elsevier BV]
卷期号:175: 106294-106294 被引量:7
标识
DOI:10.1016/j.neunet.2024.106294
摘要

Segmenting the irregular pancreas and inconspicuous tumor simultaneously is an essential but challenging step in diagnosing pancreatic cancer. Current deep-learning (DL) methods usually segment the pancreas or tumor independently using mixed image features, which are disrupted by surrounding complex and low-contrast background tissues. Here, we proposed a deep causal learning framework named CausegNet for pancreas and tumor co-segmentation in 3D CT sequences. Specifically, a causality-aware module and a counterfactual loss are employed to enhance the DL network's comprehension of the anatomical causal relationship between the foreground elements (pancreas and tumor) and the background. By integrating causality into CausegNet, the network focuses solely on extracting intrinsic foreground causal features while effectively learning the potential causality between the pancreas and the tumor. Then based on the extracted causal features, CausegNet applies a counterfactual inference to significantly reduce the background interference and sequentially search for pancreas and tumor from the foreground. Consequently, our approach can handle deformable pancreas and obscure tumors, resulting in superior co-segmentation performance in both public and real clinical datasets, achieving the highest pancreas/tumor Dice coefficients of 86.67%/84.28%. The visualized features and anti-noise experiments further demonstrate the causal interpretability and stability of our method. Furthermore, our approach improves the accuracy and sensitivity of downstream pancreatic cancer risk assessment task by 12.50% and 50.00%, respectively, compared to experienced clinicians, indicating promising clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦l完成签到,获得积分10
刚刚
无语的小熊猫完成签到,获得积分10
刚刚
刚刚
彭于晏应助GEeZiii采纳,获得10
1秒前
xiao完成签到,获得积分10
1秒前
Kingcrimson完成签到,获得积分10
1秒前
追梦完成签到,获得积分10
1秒前
崔昕雨完成签到,获得积分20
2秒前
2秒前
程诺发布了新的文献求助10
2秒前
LFY完成签到,获得积分10
2秒前
Lcy发布了新的文献求助10
2秒前
3秒前
newman发布了新的文献求助50
3秒前
生动曲奇完成签到,获得积分10
3秒前
月月鸟完成签到,获得积分10
3秒前
4秒前
无语的如天完成签到 ,获得积分10
4秒前
vitamin发布了新的文献求助10
4秒前
NexusExplorer应助梦幻采纳,获得10
4秒前
酷酷的罡完成签到,获得积分10
4秒前
wy完成签到,获得积分10
5秒前
路过人间发布了新的文献求助20
5秒前
辛俊辰发布了新的文献求助10
5秒前
周哥完成签到,获得积分20
6秒前
6秒前
Gan发布了新的文献求助10
6秒前
光电很亮发布了新的文献求助10
7秒前
轻松千山发布了新的文献求助30
7秒前
subi111完成签到,获得积分10
7秒前
一小部分我完成签到 ,获得积分10
7秒前
8秒前
8秒前
顾矜应助陶醉涵梅采纳,获得10
8秒前
9秒前
纪富完成签到 ,获得积分10
10秒前
10秒前
relevance完成签到,获得积分10
10秒前
lhx完成签到,获得积分10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301