Deep causal learning for pancreatic cancer segmentation in CT sequences

反事实思维 人工智能 可解释性 胰腺 分割 深度学习 计算机科学 因果关系(物理学) 胰腺癌 因果推理 推论 癌症 模式识别(心理学) 机器学习 医学 内科学 病理 心理学 物理 社会心理学 量子力学
作者
Chengkang Li,Yishen Mao,Shuyu Liang,Ji Li,Yuanyuan Wang,Yi Guo
出处
期刊:Neural Networks [Elsevier]
卷期号:175: 106294-106294 被引量:13
标识
DOI:10.1016/j.neunet.2024.106294
摘要

Segmenting the irregular pancreas and inconspicuous tumor simultaneously is an essential but challenging step in diagnosing pancreatic cancer. Current deep-learning (DL) methods usually segment the pancreas or tumor independently using mixed image features, which are disrupted by surrounding complex and low-contrast background tissues. Here, we proposed a deep causal learning framework named CausegNet for pancreas and tumor co-segmentation in 3D CT sequences. Specifically, a causality-aware module and a counterfactual loss are employed to enhance the DL network's comprehension of the anatomical causal relationship between the foreground elements (pancreas and tumor) and the background. By integrating causality into CausegNet, the network focuses solely on extracting intrinsic foreground causal features while effectively learning the potential causality between the pancreas and the tumor. Then based on the extracted causal features, CausegNet applies a counterfactual inference to significantly reduce the background interference and sequentially search for pancreas and tumor from the foreground. Consequently, our approach can handle deformable pancreas and obscure tumors, resulting in superior co-segmentation performance in both public and real clinical datasets, achieving the highest pancreas/tumor Dice coefficients of 86.67%/84.28%. The visualized features and anti-noise experiments further demonstrate the causal interpretability and stability of our method. Furthermore, our approach improves the accuracy and sensitivity of downstream pancreatic cancer risk assessment task by 12.50% and 50.00%, respectively, compared to experienced clinicians, indicating promising clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
羽生完成签到,获得积分10
2秒前
2秒前
hh发布了新的文献求助10
3秒前
3秒前
kk完成签到,获得积分20
3秒前
刘一严完成签到 ,获得积分10
3秒前
若鱼发布了新的文献求助10
4秒前
13ing发布了新的文献求助60
4秒前
大个应助哈哈哈哈采纳,获得10
6秒前
jundading完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
9秒前
孙成发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
12秒前
CipherSage应助纯真的晴儿采纳,获得30
13秒前
xjl发布了新的文献求助10
13秒前
ray发布了新的文献求助10
14秒前
数钱发布了新的文献求助10
14秒前
听风挽完成签到 ,获得积分10
16秒前
yuki完成签到,获得积分10
16秒前
超帅的天曼完成签到,获得积分10
16秒前
Lucas应助孙成采纳,获得10
18秒前
呼啦啦发布了新的文献求助10
18秒前
羿_liu发布了新的文献求助10
19秒前
kento发布了新的文献求助30
20秒前
ray完成签到,获得积分10
21秒前
科目三应助阿树不是树采纳,获得10
21秒前
高冷的呆呆鱼完成签到,获得积分10
22秒前
23秒前
诸葛藏藏完成签到 ,获得积分10
23秒前
001完成签到,获得积分10
24秒前
无极微光应助哇哈哈采纳,获得20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428202
求助须知:如何正确求助?哪些是违规求助? 4542308
关于积分的说明 14179543
捐赠科研通 4459846
什么是DOI,文献DOI怎么找? 2445511
邀请新用户注册赠送积分活动 1436703
关于科研通互助平台的介绍 1413878