亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau

计算机科学 卷积神经网络 人工智能 深度学习 高原(数学) 任务(项目管理) 人工神经网络 降水 地表径流 机器学习 模式识别(心理学) 气象学 数学 生态学 经济 生物 物理 数学分析 管理
作者
Bu Li,Ruidong Li,Ting Sun,Aofan Gong,Fuqiang Tian,Mohd Yawar Ali Khan,Guangheng Ni
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:620: 129401-129401 被引量:33
标识
DOI:10.1016/j.jhydrol.2023.129401
摘要

Long short-term memory (LSTM) networks have demonstrated their excellent capability in processing long-length temporal dynamics and have proven to be effective in precipitation-runoff modeling. However, the current LSTM hydrological models lack the incorporation of multi-task learning and spatial information, which limits their ability to make full use of meteorological and hydrological data. To address this issue, this study proposes a spatiotemporal deep-learning (DL)-based hydrological model that couples the 2-Dimension convolutional neural network (CNN) and LSTM and introduces actual evaporation (Ea) as an additional training target. The proposed CNN-LSTM model is tested on three large mountainous basins on the Tibetan Plateau, and the results are compared to those obtained from the LSTM-only model. Additionally, a probe method is used to decipher the internal embedding layers of the proposed DL models. The results indicate that both LSTM and CNN-LSTM hydrological models perform well in simulating runoff (Q) and Ea, with Nash-Sutcliffe efficiency coefficients (NSEs) higher than 0.82 and 0.95, respectively. The higher NSEs suggest that introducing spatial information into LSTM-only models can improve the overall and peak model performance. Moreover, multi-task simulation with LSTM-only models shows better accuracy in the estimation of Q volume and performance, with NSEs increasing by approximately 0.02. The probe method also reveals that CNN can capture the basin-averaged meteorological values in CNN-LSTM models, while LSTM Q (Ea) models contain the information about the known Ea (Q) process. Overall, this study demonstrates the value of spatial information and multi-task learning in LSTM hydrological modeling and provides a perspective for interpreting the internal embedding layers of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梦想家发布了新的文献求助10
4秒前
21秒前
Ava应助科研通管家采纳,获得10
59秒前
Virtual应助科研通管家采纳,获得10
59秒前
59秒前
xiaolang2004完成签到,获得积分10
1分钟前
1分钟前
mickaqi完成签到 ,获得积分10
2分钟前
fhw完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
norberta发布了新的文献求助10
2分钟前
MchemG应助科研通管家采纳,获得30
3分钟前
KSung完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Hvginn发布了新的文献求助10
3分钟前
3分钟前
灵巧灵松发布了新的文献求助10
3分钟前
Zzz_Carlos完成签到 ,获得积分10
3分钟前
灵巧灵松完成签到,获得积分20
4分钟前
4分钟前
4分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
JrPaleo101完成签到,获得积分10
5分钟前
5分钟前
5分钟前
ljl86400完成签到,获得积分10
6分钟前
Owen应助科研通管家采纳,获得10
7分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
7分钟前
加绒完成签到,获得积分10
7分钟前
Hvginn完成签到,获得积分10
8分钟前
星际舟完成签到,获得积分10
8分钟前
斯文败类应助科研通管家采纳,获得10
9分钟前
9分钟前
PhD_Lee73完成签到 ,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568812
求助须知:如何正确求助?哪些是违规求助? 3991266
关于积分的说明 12355576
捐赠科研通 3663334
什么是DOI,文献DOI怎么找? 2018855
邀请新用户注册赠送积分活动 1053263
科研通“疑难数据库(出版商)”最低求助积分说明 940862