清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau

计算机科学 卷积神经网络 人工智能 深度学习 高原(数学) 任务(项目管理) 人工神经网络 降水 地表径流 机器学习 模式识别(心理学) 气象学 数学 物理 数学分析 生态学 经济 管理 生物
作者
Bu Li,Ruidong Li,Ting Sun,Aofan Gong,Fuqiang Tian,Mohd Yawar Ali Khan,Guangheng Ni
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:620: 129401-129401 被引量:56
标识
DOI:10.1016/j.jhydrol.2023.129401
摘要

Long short-term memory (LSTM) networks have demonstrated their excellent capability in processing long-length temporal dynamics and have proven to be effective in precipitation-runoff modeling. However, the current LSTM hydrological models lack the incorporation of multi-task learning and spatial information, which limits their ability to make full use of meteorological and hydrological data. To address this issue, this study proposes a spatiotemporal deep-learning (DL)-based hydrological model that couples the 2-Dimension convolutional neural network (CNN) and LSTM and introduces actual evaporation (Ea) as an additional training target. The proposed CNN-LSTM model is tested on three large mountainous basins on the Tibetan Plateau, and the results are compared to those obtained from the LSTM-only model. Additionally, a probe method is used to decipher the internal embedding layers of the proposed DL models. The results indicate that both LSTM and CNN-LSTM hydrological models perform well in simulating runoff (Q) and Ea, with Nash-Sutcliffe efficiency coefficients (NSEs) higher than 0.82 and 0.95, respectively. The higher NSEs suggest that introducing spatial information into LSTM-only models can improve the overall and peak model performance. Moreover, multi-task simulation with LSTM-only models shows better accuracy in the estimation of Q volume and performance, with NSEs increasing by approximately 0.02. The probe method also reveals that CNN can capture the basin-averaged meteorological values in CNN-LSTM models, while LSTM Q (Ea) models contain the information about the known Ea (Q) process. Overall, this study demonstrates the value of spatial information and multi-task learning in LSTM hydrological modeling and provides a perspective for interpreting the internal embedding layers of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
25秒前
随心所欲完成签到 ,获得积分10
30秒前
52秒前
百里守约完成签到 ,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小鱼应助科研通管家采纳,获得50
2分钟前
完美世界应助AA采纳,获得10
3分钟前
年轻千愁完成签到 ,获得积分10
4分钟前
练得身形似鹤形完成签到 ,获得积分10
4分钟前
4分钟前
AA发布了新的文献求助10
4分钟前
4分钟前
马铃薯完成签到,获得积分10
4分钟前
FashionBoy应助AA采纳,获得10
5分钟前
yf完成签到 ,获得积分10
5分钟前
zxq完成签到 ,获得积分10
6分钟前
drhwang完成签到,获得积分10
6分钟前
特特雷珀萨努完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Chonger发布了新的文献求助10
6分钟前
film完成签到 ,获得积分10
6分钟前
AA发布了新的文献求助10
6分钟前
红火完成签到 ,获得积分10
7分钟前
7分钟前
情怀应助兜兜采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
AA完成签到,获得积分20
7分钟前
雪山飞龙发布了新的文献求助10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
兜兜发布了新的文献求助10
7分钟前
7分钟前
8分钟前
兜兜完成签到,获得积分10
8分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4614011
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531