Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau

计算机科学 卷积神经网络 人工智能 深度学习 高原(数学) 任务(项目管理) 人工神经网络 降水 地表径流 机器学习 模式识别(心理学) 气象学 数学 生态学 经济 生物 物理 数学分析 管理
作者
Bu Li,Ruidong Li,Ting Sun,Aofan Gong,Fuqiang Tian,Mohd Yawar Ali Khan,Guangheng Ni
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:620: 129401-129401 被引量:33
标识
DOI:10.1016/j.jhydrol.2023.129401
摘要

Long short-term memory (LSTM) networks have demonstrated their excellent capability in processing long-length temporal dynamics and have proven to be effective in precipitation-runoff modeling. However, the current LSTM hydrological models lack the incorporation of multi-task learning and spatial information, which limits their ability to make full use of meteorological and hydrological data. To address this issue, this study proposes a spatiotemporal deep-learning (DL)-based hydrological model that couples the 2-Dimension convolutional neural network (CNN) and LSTM and introduces actual evaporation (Ea) as an additional training target. The proposed CNN-LSTM model is tested on three large mountainous basins on the Tibetan Plateau, and the results are compared to those obtained from the LSTM-only model. Additionally, a probe method is used to decipher the internal embedding layers of the proposed DL models. The results indicate that both LSTM and CNN-LSTM hydrological models perform well in simulating runoff (Q) and Ea, with Nash-Sutcliffe efficiency coefficients (NSEs) higher than 0.82 and 0.95, respectively. The higher NSEs suggest that introducing spatial information into LSTM-only models can improve the overall and peak model performance. Moreover, multi-task simulation with LSTM-only models shows better accuracy in the estimation of Q volume and performance, with NSEs increasing by approximately 0.02. The probe method also reveals that CNN can capture the basin-averaged meteorological values in CNN-LSTM models, while LSTM Q (Ea) models contain the information about the known Ea (Q) process. Overall, this study demonstrates the value of spatial information and multi-task learning in LSTM hydrological modeling and provides a perspective for interpreting the internal embedding layers of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QZZ完成签到,获得积分10
刚刚
agnway完成签到,获得积分10
刚刚
1秒前
战战兢兢完成签到 ,获得积分10
1秒前
xuejie发布了新的文献求助30
1秒前
专一的傲白完成签到 ,获得积分10
1秒前
星辰大海应助miezhugong采纳,获得30
2秒前
zh完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
CodeCraft应助he采纳,获得10
2秒前
wisdom完成签到,获得积分10
3秒前
科研通AI2S应助Distance采纳,获得20
3秒前
4秒前
4秒前
肖耶啵完成签到,获得积分10
4秒前
betyby发布了新的文献求助10
5秒前
5秒前
电致阿光完成签到,获得积分10
6秒前
科研通AI2S应助zhuang采纳,获得10
6秒前
羊羊完成签到,获得积分10
6秒前
范月月完成签到 ,获得积分10
7秒前
甜美追命发布了新的文献求助10
8秒前
Eric_Zhang完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
万能图书馆应助yyy采纳,获得10
9秒前
weiweiwu12完成签到,获得积分10
9秒前
夏xia完成签到,获得积分10
9秒前
arzw完成签到,获得积分10
9秒前
hdh完成签到,获得积分10
10秒前
锦鲤护体发布了新的文献求助10
10秒前
jiabu完成签到 ,获得积分10
10秒前
王大锤完成签到,获得积分10
10秒前
小赵同学完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259