Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau

计算机科学 卷积神经网络 人工智能 深度学习 高原(数学) 任务(项目管理) 人工神经网络 降水 地表径流 机器学习 模式识别(心理学) 气象学 数学 生态学 经济 生物 物理 数学分析 管理
作者
Bu Li,Ruidong Li,Ting Sun,Aofan Gong,Fuqiang Tian,Mohd Yawar Ali Khan,Guangheng Ni
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:620: 129401-129401 被引量:33
标识
DOI:10.1016/j.jhydrol.2023.129401
摘要

Long short-term memory (LSTM) networks have demonstrated their excellent capability in processing long-length temporal dynamics and have proven to be effective in precipitation-runoff modeling. However, the current LSTM hydrological models lack the incorporation of multi-task learning and spatial information, which limits their ability to make full use of meteorological and hydrological data. To address this issue, this study proposes a spatiotemporal deep-learning (DL)-based hydrological model that couples the 2-Dimension convolutional neural network (CNN) and LSTM and introduces actual evaporation (Ea) as an additional training target. The proposed CNN-LSTM model is tested on three large mountainous basins on the Tibetan Plateau, and the results are compared to those obtained from the LSTM-only model. Additionally, a probe method is used to decipher the internal embedding layers of the proposed DL models. The results indicate that both LSTM and CNN-LSTM hydrological models perform well in simulating runoff (Q) and Ea, with Nash-Sutcliffe efficiency coefficients (NSEs) higher than 0.82 and 0.95, respectively. The higher NSEs suggest that introducing spatial information into LSTM-only models can improve the overall and peak model performance. Moreover, multi-task simulation with LSTM-only models shows better accuracy in the estimation of Q volume and performance, with NSEs increasing by approximately 0.02. The probe method also reveals that CNN can capture the basin-averaged meteorological values in CNN-LSTM models, while LSTM Q (Ea) models contain the information about the known Ea (Q) process. Overall, this study demonstrates the value of spatial information and multi-task learning in LSTM hydrological modeling and provides a perspective for interpreting the internal embedding layers of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小金骑士发布了新的文献求助10
1秒前
青衣北风完成签到,获得积分10
2秒前
可爱的函函应助ppp采纳,获得10
2秒前
万俟发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
zxxx完成签到,获得积分10
6秒前
青苔发布了新的文献求助10
6秒前
HJM发布了新的文献求助10
7秒前
7秒前
7秒前
秋兰碧萱完成签到,获得积分10
7秒前
8秒前
8秒前
yu发布了新的文献求助10
8秒前
拾壹发布了新的文献求助10
8秒前
活泼火水发布了新的文献求助10
9秒前
jxt2023完成签到,获得积分10
9秒前
田様应助怕孤独的如凡采纳,获得10
9秒前
9秒前
ds发布了新的文献求助10
10秒前
10秒前
SMG发布了新的文献求助10
10秒前
Jasper应助paopao采纳,获得10
10秒前
风再起时发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
11秒前
肖肖发布了新的文献求助10
12秒前
MOMO完成签到,获得积分10
12秒前
领导范儿应助秋兰碧萱采纳,获得10
12秒前
zkf完成签到,获得积分10
13秒前
13秒前
11完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328