Real-Time Intelligent Prediction Method of Cable’s Fundamental Frequency for Intelligent Maintenance of Cable-Stayed Bridges

桥(图论) 超参数 塔楼 人工神经网络 跨度(工程) 工程类 领域(数学) 梁(结构) 非线性系统 计算机科学 结构工程 人工智能 模拟 数学 量子力学 医学 物理 内科学 纯数学
作者
Yongqiang Li,Hanwei Zhao,Zixiang Yue,Yiwei Li,Yan Zhang,Dacheng Zhao
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (5): 4086-4086 被引量:7
标识
DOI:10.3390/su15054086
摘要

Cable’s fundamental frequency (CFF) is an important characteristic of the working state of long-span cable-stayed bridges. The change in the bridge’s temperature field will influence CFF by altering the cable’s tension and the cables’ sags. An accurate regression model between the temperature-induced variation of CFF and the real-time changing temperature field should be established. Then, the reference value of the temperature-induced variation of CFF can be obtained after inputting the real-time temperature data. In this study, an intelligent real-time prediction model for CFF is proposed based on the full-bridge temperature field, including the average temperature of the main beam, the vertical temperature difference of the main beam, and the temperature of the cable tower. Besides, a machine learning method named the long short-term memory (LSTM) network is exploited to ensure the nonlinear fitting performance of the model, and a paradigm for optimal hyperparameter selection and training strategy selection is provided. To verify the superiority of the LSTM-based model, the output accuracy of the linear regression, BP network, and LSTM network was tested and compared using the monitoring data collected from cable sensors in the main span and side span, which provides an important basis for the intelligent maintenance and sustainable operation of the bridge cables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨阳洋完成签到,获得积分10
刚刚
苯环完成签到,获得积分10
1秒前
1秒前
syk应助123456采纳,获得10
2秒前
2秒前
上官若男应助冷艳中蓝采纳,获得10
3秒前
充电宝应助赵泳行采纳,获得10
3秒前
杨阳洋发布了新的文献求助20
5秒前
5秒前
6秒前
蒋蒋完成签到,获得积分20
6秒前
6秒前
sissiarno应助龙泉居士采纳,获得30
8秒前
稳如老狗完成签到,获得积分10
8秒前
焦焦发布了新的文献求助10
9秒前
所所应助怕黑的擎采纳,获得10
10秒前
12秒前
gent完成签到,获得积分10
12秒前
13秒前
13秒前
0905应助故城采纳,获得10
13秒前
13秒前
CodeCraft应助子21采纳,获得10
14秒前
infer1024完成签到 ,获得积分10
14秒前
称心鸵鸟完成签到,获得积分10
14秒前
15秒前
15秒前
冷艳中蓝发布了新的文献求助10
16秒前
16秒前
遥山发布了新的文献求助10
17秒前
lyy发布了新的文献求助10
17秒前
18秒前
缓慢的海云完成签到,获得积分10
18秒前
赵泳行发布了新的文献求助10
19秒前
Czerkingsky完成签到,获得积分10
19秒前
科研通AI2S应助123456采纳,获得10
19秒前
20秒前
20秒前
20秒前
尊敬飞丹发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437