Attributed multi-query community search via random walk similarity

计算机科学 节点(物理) 数据挖掘 相似性(几何) 样品(材料) 随机游动 灵活性(工程) 编码 路径(计算) 理论计算机科学 人工智能 数学 计算机网络 图像(数学) 统计 基因 工程类 结构工程 化学 生物化学 色谱法
作者
Qingqing Li,Huifang Ma,Ju Li,Zhixin Li,Liang Chang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:631: 91-107 被引量:1
标识
DOI:10.1016/j.ins.2023.02.071
摘要

Community search aims to provide efficient solutions for searching high-quality communities via given sample nodes from network. Much research effort has devoted to mining a single community based on the assumption of sample nodes are from the same community. Despite their effectiveness, the following two insights are often neglected. First, complex high-order structural relationship and attribute provide auxiliary information to represent nodes and offer meaningful information to compensate the incomplete and missing information of the network, it benefits to optimal results. Second, user usually assumes that sample nodes come from the same community without any prior knowledge. This stringent assumption limits the flexibility of algorithm in many real-world scenarios. To this end, we propose a novel multi-community search method in attributed networks that is capable of effectively searching multi-communities where sample nodes locate. Specifically, we appoint complex structural information as internal attributes which explicitly encode node's interaction and combine it with node attributes. In order to better capture association between nodes and attributes, we construct a node-attribute graph and similarity enhanced random walk is performed based on it. The similarity enhanced random walk is developed to reinforce the walking path of each sample node so that they can better distinguish and capture the community structure for sample nodes. The multi-communities with densely connected and similar attributes can be found by parallel conductance. Extensive experimental results on both synthetic and real-world graphs verify the effectiveness and efficiency of the proposed method, and show its superiority over many state-of-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含糊的衬衫完成签到 ,获得积分20
3秒前
byron发布了新的文献求助10
3秒前
SciGPT应助云等道采纳,获得30
4秒前
瓜瓜发布了新的文献求助10
6秒前
6秒前
茶茶完成签到,获得积分10
7秒前
9秒前
9秒前
楚寅完成签到 ,获得积分10
11秒前
浮游应助ppcat采纳,获得10
11秒前
科研通AI6应助Criminology34采纳,获得10
12秒前
byron完成签到,获得积分10
12秒前
科研通AI6应助lim采纳,获得50
13秒前
等待凝海发布了新的文献求助10
13秒前
13秒前
阿湫完成签到,获得积分10
13秒前
zzy发布了新的文献求助20
14秒前
苹果冬莲完成签到,获得积分10
14秒前
Yao发布了新的文献求助10
14秒前
找不完完成签到,获得积分10
15秒前
Ava应助狮朱采纳,获得10
15秒前
A.M完成签到 ,获得积分10
15秒前
苏安泠完成签到 ,获得积分10
16秒前
joysel完成签到 ,获得积分10
16秒前
jinhongyangkim完成签到,获得积分20
17秒前
小鱼儿发布了新的文献求助10
17秒前
科目三应助子同829采纳,获得10
18秒前
FashionBoy应助infinity采纳,获得10
19秒前
Yt完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
SJK完成签到,获得积分10
22秒前
隐形曼青应助daiweiwei采纳,获得10
22秒前
bsect完成签到,获得积分10
23秒前
香菜丸子发布了新的文献求助10
24秒前
Orange应助carter6713采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906930
求助须知:如何正确求助?哪些是违规求助? 4184232
关于积分的说明 12993216
捐赠科研通 3950519
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185122
关于科研通互助平台的介绍 1091450