已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attributed multi-query community search via random walk similarity

计算机科学 节点(物理) 数据挖掘 相似性(几何) 样品(材料) 随机游动 灵活性(工程) 编码 路径(计算) 理论计算机科学 人工智能 数学 计算机网络 生物化学 化学 统计 结构工程 色谱法 工程类 图像(数学) 基因
作者
Qingqing Li,Huifang Ma,Ju Li,Zhixin Li,Liang Chang
出处
期刊:Information Sciences [Elsevier]
卷期号:631: 91-107 被引量:1
标识
DOI:10.1016/j.ins.2023.02.071
摘要

Community search aims to provide efficient solutions for searching high-quality communities via given sample nodes from network. Much research effort has devoted to mining a single community based on the assumption of sample nodes are from the same community. Despite their effectiveness, the following two insights are often neglected. First, complex high-order structural relationship and attribute provide auxiliary information to represent nodes and offer meaningful information to compensate the incomplete and missing information of the network, it benefits to optimal results. Second, user usually assumes that sample nodes come from the same community without any prior knowledge. This stringent assumption limits the flexibility of algorithm in many real-world scenarios. To this end, we propose a novel multi-community search method in attributed networks that is capable of effectively searching multi-communities where sample nodes locate. Specifically, we appoint complex structural information as internal attributes which explicitly encode node's interaction and combine it with node attributes. In order to better capture association between nodes and attributes, we construct a node-attribute graph and similarity enhanced random walk is performed based on it. The similarity enhanced random walk is developed to reinforce the walking path of each sample node so that they can better distinguish and capture the community structure for sample nodes. The multi-communities with densely connected and similar attributes can be found by parallel conductance. Extensive experimental results on both synthetic and real-world graphs verify the effectiveness and efficiency of the proposed method, and show its superiority over many state-of-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思思思颖发布了新的文献求助10
1秒前
3秒前
练习者发布了新的文献求助10
5秒前
明明发布了新的文献求助10
7秒前
xf发布了新的文献求助10
7秒前
Lucas应助bukeshuo采纳,获得10
9秒前
12秒前
上官若男应助VDC采纳,获得30
16秒前
葛怀锐完成签到 ,获得积分10
16秒前
lele7458完成签到,获得积分20
22秒前
634301059完成签到,获得积分10
24秒前
Darcy完成签到,获得积分10
24秒前
思思思颖完成签到,获得积分10
26秒前
谨慎的寒梦完成签到 ,获得积分10
29秒前
云猫完成签到 ,获得积分10
36秒前
39秒前
Akim应助宰宰小熊采纳,获得10
39秒前
天天快乐应助宰宰小熊采纳,获得10
39秒前
深情安青应助宰宰小熊采纳,获得10
39秒前
CipherSage应助乖巧的菜猪采纳,获得10
44秒前
tamo发布了新的文献求助10
44秒前
耿耿儿完成签到,获得积分10
52秒前
科研狗的春天完成签到 ,获得积分10
52秒前
sober发布了新的文献求助30
54秒前
54秒前
我是老大应助tamo采纳,获得10
57秒前
璨澄完成签到 ,获得积分10
1分钟前
HB完成签到,获得积分10
1分钟前
1分钟前
hyf567完成签到,获得积分10
1分钟前
tata0215完成签到 ,获得积分10
1分钟前
心灵美语兰完成签到 ,获得积分10
1分钟前
tamo完成签到,获得积分10
1分钟前
汉堡包应助清爽的恋风采纳,获得10
1分钟前
1分钟前
有川洋一完成签到 ,获得积分10
1分钟前
乖巧的菜猪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
坚强豪英完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162246
求助须知:如何正确求助?哪些是违规求助? 2813263
关于积分的说明 7899489
捐赠科研通 2472504
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142