Attributed multi-query community search via random walk similarity

计算机科学 节点(物理) 数据挖掘 相似性(几何) 样品(材料) 随机游动 灵活性(工程) 编码 路径(计算) 理论计算机科学 人工智能 数学 计算机网络 图像(数学) 统计 基因 工程类 结构工程 化学 生物化学 色谱法
作者
Qingqing Li,Huifang Ma,Ju Li,Zhixin Li,Liang Chang
出处
期刊:Information Sciences [Elsevier]
卷期号:631: 91-107 被引量:1
标识
DOI:10.1016/j.ins.2023.02.071
摘要

Community search aims to provide efficient solutions for searching high-quality communities via given sample nodes from network. Much research effort has devoted to mining a single community based on the assumption of sample nodes are from the same community. Despite their effectiveness, the following two insights are often neglected. First, complex high-order structural relationship and attribute provide auxiliary information to represent nodes and offer meaningful information to compensate the incomplete and missing information of the network, it benefits to optimal results. Second, user usually assumes that sample nodes come from the same community without any prior knowledge. This stringent assumption limits the flexibility of algorithm in many real-world scenarios. To this end, we propose a novel multi-community search method in attributed networks that is capable of effectively searching multi-communities where sample nodes locate. Specifically, we appoint complex structural information as internal attributes which explicitly encode node's interaction and combine it with node attributes. In order to better capture association between nodes and attributes, we construct a node-attribute graph and similarity enhanced random walk is performed based on it. The similarity enhanced random walk is developed to reinforce the walking path of each sample node so that they can better distinguish and capture the community structure for sample nodes. The multi-communities with densely connected and similar attributes can be found by parallel conductance. Extensive experimental results on both synthetic and real-world graphs verify the effectiveness and efficiency of the proposed method, and show its superiority over many state-of-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Mlwwq采纳,获得10
刚刚
1秒前
叁叁完成签到 ,获得积分10
1秒前
乐乐应助小明大明采纳,获得10
1秒前
欢乐发布了新的文献求助10
2秒前
静待花开发布了新的文献求助10
2秒前
1101592875发布了新的文献求助10
2秒前
aaaaaa完成签到,获得积分10
3秒前
3秒前
鱼叔完成签到,获得积分10
5秒前
策略完成签到 ,获得积分10
7秒前
领导范儿应助rainbow采纳,获得10
7秒前
yahosun发布了新的文献求助10
7秒前
7秒前
北儿116应助xuli21315采纳,获得30
7秒前
8秒前
ting完成签到,获得积分10
8秒前
9秒前
pingan完成签到,获得积分10
11秒前
sciscisci完成签到,获得积分10
11秒前
12秒前
JiaQi发布了新的文献求助10
13秒前
pingan发布了新的文献求助10
13秒前
jinyu完成签到 ,获得积分10
14秒前
14秒前
水123发布了新的文献求助10
14秒前
15秒前
HAo完成签到 ,获得积分10
16秒前
16秒前
16秒前
rainbow完成签到,获得积分10
16秒前
雪满头发布了新的文献求助10
17秒前
17秒前
SciGPT应助静待花开采纳,获得10
17秒前
vicky完成签到 ,获得积分10
17秒前
孤独怀柔发布了新的文献求助10
18秒前
lyncee发布了新的文献求助200
18秒前
yi完成签到,获得积分10
18秒前
Shadow完成签到 ,获得积分10
19秒前
专注的祥完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297