Attributed multi-query community search via random walk similarity

计算机科学 节点(物理) 数据挖掘 相似性(几何) 样品(材料) 随机游动 灵活性(工程) 编码 路径(计算) 理论计算机科学 人工智能 数学 计算机网络 图像(数学) 统计 基因 工程类 结构工程 化学 生物化学 色谱法
作者
Qingqing Li,Huifang Ma,Ju Li,Zhixin Li,Liang Chang
出处
期刊:Information Sciences [Elsevier]
卷期号:631: 91-107 被引量:1
标识
DOI:10.1016/j.ins.2023.02.071
摘要

Community search aims to provide efficient solutions for searching high-quality communities via given sample nodes from network. Much research effort has devoted to mining a single community based on the assumption of sample nodes are from the same community. Despite their effectiveness, the following two insights are often neglected. First, complex high-order structural relationship and attribute provide auxiliary information to represent nodes and offer meaningful information to compensate the incomplete and missing information of the network, it benefits to optimal results. Second, user usually assumes that sample nodes come from the same community without any prior knowledge. This stringent assumption limits the flexibility of algorithm in many real-world scenarios. To this end, we propose a novel multi-community search method in attributed networks that is capable of effectively searching multi-communities where sample nodes locate. Specifically, we appoint complex structural information as internal attributes which explicitly encode node's interaction and combine it with node attributes. In order to better capture association between nodes and attributes, we construct a node-attribute graph and similarity enhanced random walk is performed based on it. The similarity enhanced random walk is developed to reinforce the walking path of each sample node so that they can better distinguish and capture the community structure for sample nodes. The multi-communities with densely connected and similar attributes can be found by parallel conductance. Extensive experimental results on both synthetic and real-world graphs verify the effectiveness and efficiency of the proposed method, and show its superiority over many state-of-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PL发布了新的文献求助20
1秒前
李梦琦完成签到,获得积分20
1秒前
1秒前
fabian完成签到,获得积分10
1秒前
2秒前
Xue0129完成签到,获得积分10
3秒前
jike发布了新的文献求助10
3秒前
4秒前
纯真的柔发布了新的文献求助10
4秒前
mww完成签到,获得积分10
4秒前
MikiWu完成签到,获得积分10
5秒前
蒋22完成签到 ,获得积分10
5秒前
zoe完成签到 ,获得积分10
5秒前
5秒前
无花果应助skyangar采纳,获得10
5秒前
科研通AI6应助weiyu_u采纳,获得30
5秒前
hehe完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
慕青应助cuarzn采纳,获得10
6秒前
7秒前
玖玖完成签到,获得积分10
7秒前
惜昭发布了新的文献求助10
7秒前
8秒前
文艺代灵完成签到,获得积分10
8秒前
葛儿完成签到 ,获得积分10
8秒前
9秒前
张某完成签到,获得积分10
9秒前
跳跃太清发布了新的文献求助10
9秒前
9秒前
yc发布了新的文献求助20
9秒前
Pie完成签到,获得积分10
9秒前
10秒前
左丘世立发布了新的文献求助10
10秒前
阿蓉啊完成签到 ,获得积分10
10秒前
TIANEO发布了新的文献求助10
10秒前
小瓶子发布了新的文献求助10
10秒前
蛋烘糕发布了新的文献求助10
10秒前
大虫子完成签到,获得积分10
10秒前
领导范儿应助纯真的柔采纳,获得10
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671