Attributed multi-query community search via random walk similarity

计算机科学 节点(物理) 数据挖掘 相似性(几何) 样品(材料) 随机游动 灵活性(工程) 编码 路径(计算) 理论计算机科学 人工智能 数学 计算机网络 生物化学 化学 统计 结构工程 色谱法 工程类 图像(数学) 基因
作者
Qingqing Li,Huifang Ma,Ju Li,Zhixin Li,Liang Chang
出处
期刊:Information Sciences [Elsevier]
卷期号:631: 91-107 被引量:1
标识
DOI:10.1016/j.ins.2023.02.071
摘要

Community search aims to provide efficient solutions for searching high-quality communities via given sample nodes from network. Much research effort has devoted to mining a single community based on the assumption of sample nodes are from the same community. Despite their effectiveness, the following two insights are often neglected. First, complex high-order structural relationship and attribute provide auxiliary information to represent nodes and offer meaningful information to compensate the incomplete and missing information of the network, it benefits to optimal results. Second, user usually assumes that sample nodes come from the same community without any prior knowledge. This stringent assumption limits the flexibility of algorithm in many real-world scenarios. To this end, we propose a novel multi-community search method in attributed networks that is capable of effectively searching multi-communities where sample nodes locate. Specifically, we appoint complex structural information as internal attributes which explicitly encode node's interaction and combine it with node attributes. In order to better capture association between nodes and attributes, we construct a node-attribute graph and similarity enhanced random walk is performed based on it. The similarity enhanced random walk is developed to reinforce the walking path of each sample node so that they can better distinguish and capture the community structure for sample nodes. The multi-communities with densely connected and similar attributes can be found by parallel conductance. Extensive experimental results on both synthetic and real-world graphs verify the effectiveness and efficiency of the proposed method, and show its superiority over many state-of-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bluer发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI5应助无悔呀采纳,获得10
1秒前
毛毛虫完成签到,获得积分10
1秒前
快乐小文完成签到,获得积分10
1秒前
Nooooo发布了新的文献求助10
2秒前
2秒前
贰鸟应助木之以南采纳,获得10
2秒前
无不破哉完成签到,获得积分20
2秒前
Dai WJ发布了新的文献求助10
3秒前
黄大师完成签到 ,获得积分10
3秒前
愤怒的河虾完成签到,获得积分10
3秒前
所所应助XIXI采纳,获得10
3秒前
麻麻发布了新的文献求助10
4秒前
经法发布了新的文献求助10
4秒前
MailkMonk完成签到,获得积分20
4秒前
cici完成签到,获得积分10
5秒前
快乐小文发布了新的文献求助30
5秒前
惜寒完成签到 ,获得积分10
5秒前
5秒前
Grayball应助无奈梦岚采纳,获得10
5秒前
此生不换完成签到 ,获得积分10
6秒前
寻舟者完成签到,获得积分10
7秒前
7秒前
7秒前
橘子屿布丁完成签到,获得积分10
8秒前
8秒前
Zhy完成签到,获得积分10
9秒前
bzy发布了新的文献求助10
9秒前
9秒前
风趣秋白完成签到,获得积分10
9秒前
情怀应助tanmeng77采纳,获得10
9秒前
若空完成签到 ,获得积分10
10秒前
典雅又夏发布了新的文献求助10
10秒前
XIXI完成签到,获得积分10
10秒前
11秒前
夏夏发布了新的文献求助10
11秒前
666完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678