Attributed multi-query community search via random walk similarity

计算机科学 节点(物理) 数据挖掘 相似性(几何) 样品(材料) 随机游动 灵活性(工程) 编码 路径(计算) 理论计算机科学 人工智能 数学 计算机网络 图像(数学) 统计 基因 工程类 结构工程 化学 生物化学 色谱法
作者
Qingqing Li,Huifang Ma,Ju Li,Zhixin Li,Liang Chang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:631: 91-107 被引量:1
标识
DOI:10.1016/j.ins.2023.02.071
摘要

Community search aims to provide efficient solutions for searching high-quality communities via given sample nodes from network. Much research effort has devoted to mining a single community based on the assumption of sample nodes are from the same community. Despite their effectiveness, the following two insights are often neglected. First, complex high-order structural relationship and attribute provide auxiliary information to represent nodes and offer meaningful information to compensate the incomplete and missing information of the network, it benefits to optimal results. Second, user usually assumes that sample nodes come from the same community without any prior knowledge. This stringent assumption limits the flexibility of algorithm in many real-world scenarios. To this end, we propose a novel multi-community search method in attributed networks that is capable of effectively searching multi-communities where sample nodes locate. Specifically, we appoint complex structural information as internal attributes which explicitly encode node's interaction and combine it with node attributes. In order to better capture association between nodes and attributes, we construct a node-attribute graph and similarity enhanced random walk is performed based on it. The similarity enhanced random walk is developed to reinforce the walking path of each sample node so that they can better distinguish and capture the community structure for sample nodes. The multi-communities with densely connected and similar attributes can be found by parallel conductance. Extensive experimental results on both synthetic and real-world graphs verify the effectiveness and efficiency of the proposed method, and show its superiority over many state-of-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liufgui应助她很可疑啊采纳,获得10
刚刚
刘浩然完成签到,获得积分10
刚刚
思源应助渡尘采纳,获得10
1秒前
AVsecurity应助赫连人杰采纳,获得50
1秒前
桐桐应助沉静的电源采纳,获得10
1秒前
英姑应助hhhi采纳,获得10
2秒前
2秒前
楠小土完成签到,获得积分10
4秒前
所所应助1111111采纳,获得10
6秒前
苹果板栗发布了新的文献求助10
6秒前
magicaltang完成签到,获得积分10
7秒前
东东呀发布了新的文献求助10
8秒前
田様应助美味的薯片采纳,获得10
10秒前
10秒前
11秒前
12秒前
13秒前
叶落花开发布了新的文献求助10
14秒前
14秒前
宇文数学完成签到,获得积分10
15秒前
大气的康发布了新的文献求助10
18秒前
gkads完成签到,获得积分10
18秒前
20秒前
20秒前
21秒前
苹果板栗完成签到,获得积分10
21秒前
Dirsch完成签到,获得积分10
21秒前
希望天下0贩的0应助CC采纳,获得80
22秒前
张怡博完成签到 ,获得积分10
22秒前
玩命的朋友完成签到,获得积分10
22秒前
22秒前
难过千易发布了新的文献求助10
24秒前
25秒前
magicaltang发布了新的文献求助10
25秒前
sci帝国完成签到,获得积分20
26秒前
善学以致用应助王嘎嘎采纳,获得20
27秒前
敲西瓜发布了新的文献求助10
27秒前
28秒前
yutou完成签到,获得积分10
28秒前
ding应助大气的康采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070