Comparative study of EEG motor imagery classification based on DSCNN and ELM

运动表象 脑电图 计算机科学 人工智能 极限学习机 分类器(UML) 模式识别(心理学) 人工神经网络 机器学习 心理学 脑-机接口 精神科
作者
Jixiang Li,Yurong Li,Min Du
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104750-104750 被引量:9
标识
DOI:10.1016/j.bspc.2023.104750
摘要

With the popularization of brain-computer interface (BCI) technology, the research on intention recognition of motor imagery (MI) in electroencephalogram (EEG) has turned to the latest research points. The BCI-based system can provide a powerful rehabilitation guarantee for patients with stroke and spinal cord injury. However, EEG signals have certain complexity, which is easily interfered by other noises, resulting that it is still not enough to provide some better practical application scenarios. In this paper, an improved framework has been proposed through deep separation convolution neural network (DSCNN) and extreme learning machine (ELM) to address the recognition rate of patients' motor intention. First of all, the collected one-dimensional time series EEG signals are preprocessed into a two-dimensional grid containing spatial and temporal features. Afterwards, the DSCNN is utilized to extract the temporal features and spatial features, respectively. Thirdly, the ELM classifier is utilized to classify five kinds of MI actions according to the extracted temporal and spatial features. Experimental results indicate that the presented framework can achieve an excellent intention recognition rate of 97.88% through the public EEGMMIDB datasets. Moreover, the training time was greatly shortened from 13h30min to 9h10min with a reduction rate of about 32% under the same hardware configuration, which is superior to some advanced models. Therefore, the proposed idea not only accelerates the training speed of the model, but also can boost the application research of BCI based rehabilitation efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
让他加完成签到,获得积分10
1秒前
Xenia应助背后书雪采纳,获得10
2秒前
飞神发布了新的文献求助10
2秒前
3秒前
Nini1203发布了新的文献求助30
3秒前
3秒前
Hello应助冒险王龘采纳,获得10
4秒前
福明明发布了新的文献求助10
4秒前
桐桐应助白白嫩嫩采纳,获得10
5秒前
yy关注了科研通微信公众号
5秒前
FashionBoy应助lxl1996采纳,获得10
5秒前
万里发布了新的文献求助30
6秒前
6秒前
7秒前
wyc完成签到,获得积分10
7秒前
成和车车发布了新的文献求助10
7秒前
是滴是滴完成签到,获得积分20
8秒前
共享精神应助小玲仔采纳,获得10
8秒前
彭于晏完成签到,获得积分10
8秒前
9秒前
Mango完成签到,获得积分10
9秒前
雨落青烟起完成签到 ,获得积分10
9秒前
英姑应助El采纳,获得10
9秒前
ding应助能干的勒采纳,获得10
10秒前
GGBoy完成签到,获得积分10
11秒前
怡然铃铛发布了新的文献求助10
11秒前
11秒前
11秒前
tian完成签到 ,获得积分10
11秒前
13秒前
14秒前
科研通AI2S应助111采纳,获得10
14秒前
cucu完成签到,获得积分20
15秒前
吕广德完成签到,获得积分10
16秒前
从容访曼完成签到,获得积分10
16秒前
阿怪12333发布了新的文献求助10
16秒前
成和车车完成签到,获得积分10
17秒前
GHL发布了新的文献求助10
17秒前
shangfeng完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788