亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative study of EEG motor imagery classification based on DSCNN and ELM

运动表象 脑电图 计算机科学 人工智能 极限学习机 分类器(UML) 模式识别(心理学) 人工神经网络 机器学习 心理学 脑-机接口 精神科
作者
Jixiang Li,Yurong Li,Min Du
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104750-104750 被引量:9
标识
DOI:10.1016/j.bspc.2023.104750
摘要

With the popularization of brain-computer interface (BCI) technology, the research on intention recognition of motor imagery (MI) in electroencephalogram (EEG) has turned to the latest research points. The BCI-based system can provide a powerful rehabilitation guarantee for patients with stroke and spinal cord injury. However, EEG signals have certain complexity, which is easily interfered by other noises, resulting that it is still not enough to provide some better practical application scenarios. In this paper, an improved framework has been proposed through deep separation convolution neural network (DSCNN) and extreme learning machine (ELM) to address the recognition rate of patients' motor intention. First of all, the collected one-dimensional time series EEG signals are preprocessed into a two-dimensional grid containing spatial and temporal features. Afterwards, the DSCNN is utilized to extract the temporal features and spatial features, respectively. Thirdly, the ELM classifier is utilized to classify five kinds of MI actions according to the extracted temporal and spatial features. Experimental results indicate that the presented framework can achieve an excellent intention recognition rate of 97.88% through the public EEGMMIDB datasets. Moreover, the training time was greatly shortened from 13h30min to 9h10min with a reduction rate of about 32% under the same hardware configuration, which is superior to some advanced models. Therefore, the proposed idea not only accelerates the training speed of the model, but also can boost the application research of BCI based rehabilitation efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助魏欣娜采纳,获得10
19秒前
可爱的函函应助早川采纳,获得10
25秒前
馍夹菜完成签到,获得积分10
25秒前
29秒前
43秒前
Vivian发布了新的文献求助30
48秒前
Fox完成签到,获得积分10
53秒前
科研通AI2S应助魏欣娜采纳,获得10
56秒前
56秒前
维颖完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
2分钟前
2分钟前
33发布了新的文献求助10
2分钟前
2分钟前
田様应助yydcmnyxx采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430