Fast Beamforming Method for Plane Wave Compounding Based on Beamspace Adaptive Beamformer and Delay-Multiply-and-Sum

波束赋形 计算机科学 稳健性(进化) 自适应波束形成器 图像质量 斑点图案 算法 平滑的 帧速率 图像分辨率 对比度(视觉) 最小方差无偏估计量 平面波 人工智能 数学 图像(数学) 计算机视觉 光学 物理 电信 均方误差 统计 生物化学 基因 化学
作者
Mahsa Sotoodeh Ziksari,Babak Mohammadzadeh Asl
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:49 (5): 1164-1172 被引量:3
标识
DOI:10.1016/j.ultrasmedbio.2023.01.001
摘要

Objective

Although the use of coherent plane wave compounding is a promising technique for enabling the attainment of very high frame rate imaging, it achieves relatively low image quality because of data-independent reconstruction. Adaptive beamformers rather than delay-and-sum (DAS) conventional techniques have been proposed to improve the imaging quality. The minimum variance (MV) and delay-multiply-and-sum (DMAS) beamformers have been validated as effective in improving image quality. The MV improves mainly the resolution of the image, while being computationally expensive and having little impact on contrast. The DMAS increases the contrast while over-suppressing the speckle region in the case of 2-D summation for multi-transmission applications.

Methods

In a new approach, a beamformer based on MV and DMAS is proposed to enhance both spatial resolution and contrast in plane wave imaging. Prior to estimating the weight vector of MV, the backscattered echoes are decorrelated without any spatial smoothing. This enhances the robustness of MV without compromising the improvement in resolution. With a shift from element space to beamspace, MV weights are calculated using the spatial statistics of a set of orthogonal beams, which allows the high-complexity algorithm to be run faster. After that, the MV weights are applied to the DMAS output vector beamformed over different transmissions.

Discussion and Conclusion

The proposed method can result in better contrast resolution, thereby avoiding over-suppression. The complexity of the applied DMAS version is also similar to that of DAS. Imaging results reveal that the proposed method offers improvements over the traditional compounding method in terms of spatial and contrast resolution. It also can achieve a higher image quality compared with some existing adaptive methods applied in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nv2r4n发布了新的文献求助10
刚刚
WxChen发布了新的文献求助20
刚刚
snowdrift完成签到,获得积分10
刚刚
刚刚
Din完成签到 ,获得积分10
刚刚
1秒前
1秒前
abcc1234完成签到,获得积分10
1秒前
Nikko完成签到,获得积分10
2秒前
cxzhao完成签到,获得积分10
2秒前
Yangpc发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
宁静致远完成签到,获得积分10
4秒前
千里发布了新的文献求助10
4秒前
我是老大应助tangsuyun采纳,获得10
4秒前
X7完成签到,获得积分10
4秒前
所所应助刘鹏宇采纳,获得10
5秒前
酷波er应助无情的白桃采纳,获得10
5秒前
科研通AI5应助小香草采纳,获得10
5秒前
星star完成签到 ,获得积分10
5秒前
6秒前
6秒前
调皮的千万完成签到,获得积分10
6秒前
狂野觅云发布了新的文献求助10
6秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
小星完成签到,获得积分10
6秒前
cc发布了新的文献求助10
7秒前
小石发布了新的文献求助10
7秒前
阿宝完成签到,获得积分10
7秒前
lsx完成签到 ,获得积分10
7秒前
Owen应助Dream采纳,获得30
7秒前
8秒前
www完成签到,获得积分20
8秒前
受伤的大米完成签到,获得积分10
8秒前
ssgecust完成签到,获得积分10
8秒前
科研通AI5应助Passion采纳,获得10
9秒前
MXJ完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740