Toughening Ceramics down to Cryogenic Temperatures by Reentrant Strain-Glass Transition

材料科学 陶瓷 凝聚态物理 转变温度 大气温度范围 脆性 四方晶系 相变 正交晶系 复合材料 热力学 超导电性 结晶学 晶体结构 物理 化学
作者
Minxia Fang,Yuanchao Ji,Yan Ni,Wenjia Wang,Hengmin Zhang,Xifei Wang,Andong Xiao,Tianyu Ma,Sen Yang,Xiaobing Ren
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:130 (11) 被引量:4
标识
DOI:10.1103/physrevlett.130.116102
摘要

Ceramics, often exhibiting important functional properties like piezoelectricity, superconductivity, and magnetism, are usually mechanically brittle at room temperature and even more brittle at low temperature due to their ionic or covalent bonding nature. The brittleness in their working temperature range (mostly from room down to cryogenic temperatures) has been a limiting factor for the usefulness of these ceramics. In this Letter, we report a surprising ``low-temperature toughening'' phenomenon in a La-doped ${\mathrm{CaTiO}}_{3}$ perovskite ceramic, where a $2.5\ifmmode\times\else\texttimes\fi{}$ increase of fracture toughness ${K}_{\mathrm{IC}}$ from 1.9 to $4.8\text{ }\text{ }\mathrm{MPa}\text{ }{\mathrm{m}}^{1/2}$ occurs when cooling from above room temperature (323 K) down to a cryogenic temperature of 123 K, the lowest temperature our experiment can reach. In situ microscopic observations in combination with macroscopic characterizations show that this desired but counterintuitive phenomenon stems from a reentrant strain-glass transition, during which nanosized orthorhombic ferroelastic domains gradually emerge from the existing tetragonal ferroelastic matrix. The temperature stability of this unique microstructure and its stress-induced transition into the macroscopic orthorhombic phase provide a low-temperature toughening mechanism over a wide temperature range and explain the observed phenomenon. Our finding may open a way to design tough ceramics with a wide temperature range and shed light on the nature of reentrant transitions in other ferroic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TLB完成签到,获得积分10
2秒前
研友_ZG4ml8发布了新的文献求助10
2秒前
Hello应助菜菜Cc采纳,获得10
4秒前
Arlon完成签到,获得积分10
8秒前
哎呀小艾哈完成签到,获得积分10
9秒前
13秒前
帅气的老五关注了科研通微信公众号
14秒前
zhangxr发布了新的文献求助10
15秒前
Owen应助吴兰田采纳,获得10
15秒前
15秒前
无花果应助030采纳,获得10
16秒前
萨尔莫斯完成签到,获得积分10
17秒前
18秒前
19秒前
李健应助刘霞采纳,获得10
20秒前
20秒前
liuxueshu发布了新的文献求助10
21秒前
传奇3应助田柾国采纳,获得10
21秒前
独特凡松完成签到,获得积分10
22秒前
23秒前
23秒前
耍酷败完成签到,获得积分10
24秒前
菜菜Cc发布了新的文献求助10
26秒前
李凤凤发布了新的文献求助10
26秒前
不配.应助DianaRang采纳,获得30
27秒前
28秒前
29秒前
liuxueshu完成签到,获得积分10
29秒前
HH完成签到,获得积分10
30秒前
楼亦玉完成签到,获得积分10
31秒前
cokoy完成签到,获得积分10
32秒前
传奇3应助研友_ZG4ml8采纳,获得10
32秒前
傲娇的航空完成签到,获得积分10
33秒前
33秒前
34秒前
34秒前
seaya发布了新的文献求助10
35秒前
35秒前
wang发布了新的文献求助10
36秒前
费妖发布了新的文献求助10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825