已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

When both human and machine drivers make mistakes: Whom to blame?

责备 人为错误 陪审团 考试(生物学) 渐晕 透视图(图形) 心理学 鲁莽 人机系统 控制(管理) 计算机科学 社会心理学 工程类 人工智能 政治学 法学 可靠性工程 生物 古生物学
作者
Siming Zhai,Shan Gao,Lin Wang,Peng Liu
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:170: 103637-103637 被引量:6
标识
DOI:10.1016/j.tra.2023.103637
摘要

The advent of automated and algorithmic technology requires people to consider them when assigning responsibility for something going wrong. We focus on a focal question: who or what should be responsible when both human and machine drivers make mistakes in human–machine shared-control vehicles? We examined human judgments of responsibility for automated vehicle (AV) crashes (e.g., the 2018 Uber AV crash) caused by the distracted test driver and malfunctioning automated driving system, through a sequential mixed-methods design: a text analysis of public comments after the first trial of the Uber case (Study 1) and vignette-based experiment (Study 2). Studies 1 and 2 found that although people assigned more responsibility to the test driver than the car manufacturer, the car manufacturer is not clear of responsibility from their perspective, which is against the Uber case’s jury decision that the test driver was the only one facing criminal charges. Participants allocated equal responsibility to the normal driver and car manufacturer in Study 2. In Study 1, people gave different and sometimes antagonistic reasons for their judgments. Some commented that human drivers in AVs will inevitably feel bored and reduce vigilance and attention when the automated driving system is operating (called “passive error”), whereas others thought the test driver can keep attentive and should not be distracted (called “active error”). Study 2’s manipulation of passive and active errors, however, did not influence responsibility judgments significantly. Our results might offer insights for building a socially-acceptable framework for responsibility judgments for AV crashes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CWNU_HAN应助jxp采纳,获得30
3秒前
港港完成签到 ,获得积分10
4秒前
研友_5Y9Z75完成签到 ,获得积分0
8秒前
9秒前
9秒前
monned完成签到 ,获得积分10
10秒前
诺一44发布了新的文献求助10
13秒前
完美世界应助wrong采纳,获得10
14秒前
17秒前
18秒前
无私映菱发布了新的文献求助10
19秒前
暴躁的元灵完成签到 ,获得积分10
19秒前
丿夜幕灬降临丨完成签到,获得积分10
21秒前
guan发布了新的文献求助10
22秒前
张琛瑶发布了新的文献求助10
23秒前
今后应助调皮千兰采纳,获得10
24秒前
gc完成签到 ,获得积分10
24秒前
26秒前
JY完成签到,获得积分10
31秒前
check003完成签到 ,获得积分10
35秒前
36秒前
36秒前
彦子完成签到 ,获得积分10
37秒前
37秒前
anjun完成签到 ,获得积分10
38秒前
guan完成签到,获得积分10
38秒前
Derek完成签到,获得积分0
38秒前
甜茶发布了新的文献求助10
42秒前
wrong发布了新的文献求助10
42秒前
一朵棉花糖完成签到 ,获得积分10
43秒前
传奇3应助舒心的寻琴采纳,获得10
43秒前
46秒前
xyyyy完成签到 ,获得积分10
47秒前
z1jioyeah完成签到 ,获得积分10
47秒前
49秒前
wrong完成签到,获得积分10
51秒前
阳光完成签到,获得积分10
52秒前
55秒前
张琛瑶发布了新的文献求助20
57秒前
英姑应助科研通管家采纳,获得30
57秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125967
求助须知:如何正确求助?哪些是违规求助? 2776233
关于积分的说明 7729471
捐赠科研通 2431595
什么是DOI,文献DOI怎么找? 1292160
科研通“疑难数据库(出版商)”最低求助积分说明 622548
版权声明 600392