Facile Approach for Efficient Non-Fullerene-Based Binary and Ternary Organic Solar Cells Using Hydrated Vanadium Pentoxide as a Hole Transport Layer

佩多:嘘 材料科学 三元运算 有机太阳能电池 化学工程 工作职能 五氧化二铁 图层(电子) 纳米技术 聚合物 复合材料 计算机科学 工程类 冶金 程序设计语言
作者
Hemraj Dahiya,Rakesh Suthar,Manish Kumar Singh,Rahul Singhal,Supravat Karak,Ganesh D. Sharma
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (6): 3442-3451 被引量:4
标识
DOI:10.1021/acsaem.2c04156
摘要

Although the power conversion efficiency (PCE) of single-junction organic solar cells (OSCs) has exceeded more than 19%, the biggest obstacle to the commercial application of OSCs is the low device stability. Herein, this work reports the development of hydrated vanadium pentoxide (HVO) as a hole transport layer (HTL) with outstanding hole-extracting capabilities by a simple synthesis process and its use in the non-fullerene-acceptor-based binary and ternary OSCs. OSCs based on PM6:BTP-eC9 using an indium tin oxide/hydrated vanadium pentoxide (ITO/HVO) anode exhibit a maximum PCE of 13.33%, which is higher than ITO/poly(3,4-ethylene dioxythiophene):(polystyrene sulfonate) (PEDOT:PSS) (12.09%). Additionally, ternary (with an active layer of PM6:BTP-eC9:PC71BM) devices were also fabricated to analyze the impact of HVO HTL and achieved a PCE of 14.34%. The higher PCE is found to originate from the much higher work function (WF) of ITO/HVO than ITO/PEDOT:PSS. Furthermore, to replace a sophisticated thermal evaporation technique with a solution-processed, we fabricated inverted devices with HVO instead of control MoO3 HTL. The highest occupied molecular orbital (HOMO) energy level of HVO is nearly equal to MoO3, and the device based on HVO attributed a PCE of 7.47%, which is higher than MoO3 (6.70%)-based devices. This work provides a low-cost, highly efficient, and solution-processed HTL material for OSCs with long-term air stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果柠檬发布了新的文献求助10
刚刚
4566发布了新的文献求助10
1秒前
CA完成签到,获得积分10
1秒前
czh应助科研通管家采纳,获得10
1秒前
逆时针应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
1秒前
郭小宝发布了新的文献求助10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
longhang应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
芬栀发布了新的文献求助10
2秒前
彭栋发布了新的文献求助10
3秒前
科目三应助YJ888采纳,获得10
3秒前
顾矜应助girl采纳,获得10
4秒前
徐哈哈完成签到,获得积分10
5秒前
5秒前
阿朱完成签到,获得积分10
5秒前
牛马研究生完成签到,获得积分20
6秒前
昭昭完成签到,获得积分10
6秒前
4566完成签到,获得积分10
7秒前
所所应助牛马码字员采纳,获得10
11秒前
昭昭发布了新的文献求助10
12秒前
君衡完成签到 ,获得积分10
13秒前
潇湘雪月发布了新的文献求助10
13秒前
15秒前
754完成签到,获得积分10
15秒前
SciGPT应助芒果柠檬采纳,获得10
16秒前
芬栀完成签到,获得积分10
17秒前
烂漫吐司完成签到,获得积分10
18秒前
19秒前
爱蕊咖完成签到 ,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136