Facile Approach for Efficient Non-Fullerene-Based Binary and Ternary Organic Solar Cells Using Hydrated Vanadium Pentoxide as a Hole Transport Layer

佩多:嘘 材料科学 三元运算 有机太阳能电池 化学工程 工作职能 五氧化二铁 图层(电子) 纳米技术 聚合物 复合材料 计算机科学 工程类 冶金 程序设计语言
作者
Hemraj Dahiya,Rakesh Suthar,Manish Kumar Singh,Rahul Singhal,Supravat Karak,Ganesh D. Sharma
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (6): 3442-3451 被引量:8
标识
DOI:10.1021/acsaem.2c04156
摘要

Although the power conversion efficiency (PCE) of single-junction organic solar cells (OSCs) has exceeded more than 19%, the biggest obstacle to the commercial application of OSCs is the low device stability. Herein, this work reports the development of hydrated vanadium pentoxide (HVO) as a hole transport layer (HTL) with outstanding hole-extracting capabilities by a simple synthesis process and its use in the non-fullerene-acceptor-based binary and ternary OSCs. OSCs based on PM6:BTP-eC9 using an indium tin oxide/hydrated vanadium pentoxide (ITO/HVO) anode exhibit a maximum PCE of 13.33%, which is higher than ITO/poly(3,4-ethylene dioxythiophene):(polystyrene sulfonate) (PEDOT:PSS) (12.09%). Additionally, ternary (with an active layer of PM6:BTP-eC9:PC71BM) devices were also fabricated to analyze the impact of HVO HTL and achieved a PCE of 14.34%. The higher PCE is found to originate from the much higher work function (WF) of ITO/HVO than ITO/PEDOT:PSS. Furthermore, to replace a sophisticated thermal evaporation technique with a solution-processed, we fabricated inverted devices with HVO instead of control MoO3 HTL. The highest occupied molecular orbital (HOMO) energy level of HVO is nearly equal to MoO3, and the device based on HVO attributed a PCE of 7.47%, which is higher than MoO3 (6.70%)-based devices. This work provides a low-cost, highly efficient, and solution-processed HTL material for OSCs with long-term air stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助xiepeijuan采纳,获得10
2秒前
3秒前
pinecone发布了新的文献求助10
4秒前
Ava应助风雨无阻采纳,获得10
4秒前
6秒前
7秒前
8秒前
庾磬完成签到,获得积分10
8秒前
8秒前
pinecone完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
wo完成签到,获得积分10
10秒前
11秒前
11秒前
坚定的千秋完成签到,获得积分10
11秒前
咻咻发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
15秒前
15秒前
17秒前
风雨无阻发布了新的文献求助10
17秒前
JamesPei应助王闯采纳,获得10
21秒前
KH发布了新的文献求助10
21秒前
平常的路人完成签到,获得积分10
22秒前
22秒前
弓長玉王令完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
skyeblue完成签到,获得积分10
24秒前
CodeCraft应助Jason采纳,获得10
24秒前
华仔应助悠着点采纳,获得10
24秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
科研通AI6.1应助小远采纳,获得10
26秒前
李白的白123完成签到,获得积分10
26秒前
活泼的遥完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774986
求助须知:如何正确求助?哪些是违规求助? 5621130
关于积分的说明 15437281
捐赠科研通 4907416
什么是DOI,文献DOI怎么找? 2640634
邀请新用户注册赠送积分活动 1588554
关于科研通互助平台的介绍 1543417