AlphaFold2 and its applications in the fields of biology and medicine

生物 系统生物学 计算生物学 结构生物学 计算机科学 数据科学 遗传学
作者
Zhenyu Yang,Xiaoxi Zeng,Yi Zhao,Runsheng Chen
出处
期刊:Signal Transduction and Targeted Therapy [Springer Nature]
卷期号:8 (1) 被引量:162
标识
DOI:10.1038/s41392-023-01381-z
摘要

AlphaFold2 (AF2) is an artificial intelligence (AI) system developed by DeepMind that can predict three-dimensional (3D) structures of proteins from amino acid sequences with atomic-level accuracy. Protein structure prediction is one of the most challenging problems in computational biology and chemistry, and has puzzled scientists for 50 years. The advent of AF2 presents an unprecedented progress in protein structure prediction and has attracted much attention. Subsequent release of structures of more than 200 million proteins predicted by AF2 further aroused great enthusiasm in the science community, especially in the fields of biology and medicine. AF2 is thought to have a significant impact on structural biology and research areas that need protein structure information, such as drug discovery, protein design, prediction of protein function, et al. Though the time is not long since AF2 was developed, there are already quite a few application studies of AF2 in the fields of biology and medicine, with many of them having preliminarily proved the potential of AF2. To better understand AF2 and promote its applications, we will in this article summarize the principle and system architecture of AF2 as well as the recipe of its success, and particularly focus on reviewing its applications in the fields of biology and medicine. Limitations of current AF2 prediction will also be discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jack完成签到,获得积分10
1秒前
Yohok完成签到,获得积分10
1秒前
领导范儿应助tan90采纳,获得10
1秒前
景Jing完成签到,获得积分10
1秒前
1秒前
zzc完成签到,获得积分10
3秒前
3秒前
3秒前
小晶豆完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
李健的小迷弟应助Mark采纳,获得20
5秒前
bbl完成签到,获得积分10
5秒前
6秒前
李健的粉丝团团长应助伈X采纳,获得10
6秒前
奈何发布了新的文献求助10
6秒前
淡然白安发布了新的文献求助10
6秒前
菜菜的脆角完成签到,获得积分10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
dzbb应助科研通管家采纳,获得30
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
17应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得30
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
李健的小迷弟应助chun采纳,获得10
8秒前
无法忘记Le完成签到 ,获得积分10
9秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919