Eye-Blink Detection under Low-Light Conditions Based on Zero-DCE

计算机科学 自然性 计算机视觉 亮度 人工智能 面子(社会学概念) 人眼 对比度(视觉) 零(语言学) 光学 物理 社会科学 语言学 量子力学 哲学 社会学
作者
Xiaolin Zhou
标识
DOI:10.1109/tocs56154.2022.10016013
摘要

Eye-blink is an effective tool for human-computer interaction, and it could be a physiological index to judge human activities. Nonetheless, eye-blink reactions not only happen during the daytime, but also blink a lot during nighttime, as blink can moisten the eye when people feel fatigued. In this paper, eye-blink detection under a low-light environment is proposed, improving the success rate of detecting blinks in an insufficient light environment. After comparing two face meshes, which are generated by Dlib and MediaPipe, MediaPipe can yield an abundant and precise face landmark. Even without applying some methods of low-light image enhancement (LLIE), the method of MediaPipe can locate an approximate area of eyes in a nighttime environment. For the problem of detecting blink under a low-light environment, Zero-Reference Deep Curve Estimation (Zero-DCE), a deep learning-based method, is applied. Zero-DCE is used to improve the details of dark blurry images, the advantage of which is zero-reference, i.e., no paired or unpaired data are needed in the training process. Also, Zero-DCE can yield a pleasing result in the aspects of brightness, color, contrast, and naturalness, the details of which will be shown in the following images. When under sufficient light environment, the average success rate of detecting right eye blink is 95.9%, and for left eye blink is 91.2%; when under insufficient light environment without enhancing the image, the average success rate of detecting right eye blink is only 39.7%, and for left eye blink is only 48.8%; when under an insufficient light environment with Zero-DCE, enhancing the quality of image, the average success rate of detecting right eye blink raise to 84%, and for left eye blink raises to 92.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的小笼包完成签到,获得积分10
刚刚
清秀初柳完成签到,获得积分20
1秒前
酷酷的依波完成签到,获得积分10
1秒前
科研通AI5应助许坤采纳,获得10
1秒前
3秒前
可爱的函函应助曾经不言采纳,获得10
3秒前
共享精神应助舒心的亦瑶采纳,获得10
4秒前
NexusExplorer应助hwq采纳,获得10
4秒前
852应助aaaa采纳,获得10
4秒前
5秒前
初夏发布了新的文献求助10
5秒前
杨迅发布了新的文献求助10
5秒前
5秒前
ocean发布了新的文献求助10
6秒前
FRANKZZ发布了新的文献求助10
6秒前
懵懂的小夏完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
超帅迎松发布了新的文献求助10
10秒前
上善若水完成签到 ,获得积分10
10秒前
111发布了新的文献求助10
10秒前
12秒前
hwq完成签到,获得积分10
12秒前
12秒前
呼啦呼啦完成签到,获得积分10
13秒前
13秒前
心想事成组完成签到,获得积分10
14秒前
Lucas应助平常心采纳,获得10
14秒前
14秒前
15秒前
16秒前
糖果苏扬发布了新的文献求助10
16秒前
香蕉觅云应助cmx采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256