亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A smart decision support system to diagnose arrhythymia using ensembled ConvNet and ConvNet-LSTM model

计算机科学 卷积神经网络 人工智能 可穿戴计算机 深度学习 心跳 人工神经网络 云计算 机器学习 实时计算 嵌入式系统 计算机网络 操作系统
作者
Shamik Tiwari,Anurag Jain,Varun Sapra,Deepika Koundal,Fayadh Alenezi,Kemal Polat,Adi Alhudhaif,Majid Nour
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 118933-118933 被引量:38
标识
DOI:10.1016/j.eswa.2022.118933
摘要

Automatic screening approaches can help diagnose Cardiovascular Disease (CVD) early, which is the leading source of mortality worldwide. Electrocardiogram (ECG/EKG)-based methods are frequently utilized to detect CVDs since they are a reliable and non-invasive tool. Due to this, Smart Cardiovascular Disease Detection System (SCDDS) has been offered in this manuscript to detect heart disease in advance. A wearable device embedded with electrodes and Internet of Things (IoT) sensors is utilized to record the EKG signals. Bluetooth is used to send EKG signals to the smartphone. The smartphone transfers the signals through an Android app to a pre-trained deep learning-based architecture deployed on the cloud. The architecture analyzes the EKG signal, and a heart report is communicated to the patient and advises further preventive action. We offered an ensembled Convolution Neural Network architecture (ConvNet) and Convolution Neural Network architecture - Long Short-Term Memory Networks (ConvNet-LSTM) architecture to detect atrial fibrillation heartbeats automatically. The architecture utilizes a convolutional neural network and long short-term memory network to extract local correlation features and capture the front-to-back dependencies of EKG sequence data. MIT-BIH atrial fibrillation database was utilized to design the architecture and achieved an overall categorization accuracy of 98% for the test set's heartbeat data. The findings of this work show that the suggested system has achieved significant accuracy with the ensembling of models. Such models can be deployed in wearable devices and smartphones for continuous monitoring and reporting of the heart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
暴躁的老哥完成签到 ,获得积分10
44秒前
53秒前
爆米花应助hxy采纳,获得10
54秒前
QingSun1发布了新的文献求助10
58秒前
1分钟前
QingSun1完成签到,获得积分20
1分钟前
hxy发布了新的文献求助10
1分钟前
2分钟前
dgcyjvfb完成签到,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
dgcyjvfb发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Dou发布了新的文献求助10
3分钟前
天天快乐应助Dou采纳,获得10
4分钟前
4分钟前
dgcyjvfb发布了新的文献求助10
4分钟前
4分钟前
伶俐楷瑞完成签到,获得积分10
4分钟前
4分钟前
dgcyjvfb发布了新的文献求助10
4分钟前
我爱高数发布了新的文献求助10
4分钟前
小马甲应助lulubeans采纳,获得10
4分钟前
4分钟前
4分钟前
我爱高数完成签到,获得积分10
4分钟前
小刘恨香菜完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
lulubeans发布了新的文献求助10
5分钟前
lulubeans完成签到,获得积分20
5分钟前
5分钟前
5分钟前
领导范儿应助lulubeans采纳,获得30
5分钟前
自然涵易完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
自然涵易发布了新的文献求助10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041151
关于积分的说明 8984007
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697