Surface passivation in c-Si solar cells via a double-barrier quantum-well structure for ameliorated performance

钝化 掺杂剂 材料科学 扩散 光电子学 量子效率 太阳能电池 阻挡层 纳米技术 图层(电子) 兴奋剂 物理 热力学
作者
Muhammad Quddamah Khokhar,Jaeun Kim,Ziyang Cui,Sungjin Jeong,Sungheon Kim,Rajiv K. Pandey,Eun‐Chel Cho,Junsin Yi
出处
期刊:Applied Surface Science [Elsevier]
卷期号:607: 155082-155082 被引量:4
标识
DOI:10.1016/j.apsusc.2022.155082
摘要

Modern solar cell technology suffers low surface passivation, high recombination losses at the interface, and dopant diffusion losses that limit solar cell’s efficiency. Therefore, a double-barrier quantum-well (DBQW) structure-based surface passivation contact is introduced here to resolve these shortcomings. In this regard, DBQWs of different thicknesses with stacks of SiOx/ nc-SiOx (3, 5, 8, and 10 nm)/SiOx layers were explored as surface passivation layers and dopant diffusion barriers. Multiple characterizations were utilized to examine DBQW thickness-dependent properties, such as contact resistance, passivation, and recombination current density; the best result was for the 5-nm-thickness QW passivation layer. To justify the obtained result, theoretical calculations were carried out based on the experimental results, which suggested the resonance tunneling of charge carriers across the 5 nm DBQW structure. Furthermore, SIMS was explored to examine the diffusion barrier property of these QWs, which revealed that dopant diffusion was suppressed by the QW with the double SiOx layer. Finally, the nc-SiOx(n) /5-nm QW/c-Si surface passivation structure showed substantial enhancement in a lifetime (τeff) of 3560 μs, an implied open-circuit voltage (iVoc) of 735 mV, and reduced recombination current density (Jo) = 1.5 fA/cm2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
三方完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
传奇3应助陌上之心采纳,获得10
5秒前
6秒前
丘比特应助如风随水采纳,获得10
6秒前
偶然的风41177完成签到,获得积分10
7秒前
7秒前
Chaiyuan完成签到 ,获得积分0
8秒前
mong完成签到,获得积分10
8秒前
8秒前
正直的半梅完成签到,获得积分10
9秒前
黑白风发布了新的文献求助30
11秒前
神勇语柳完成签到,获得积分10
11秒前
xiaoxixixier完成签到 ,获得积分10
11秒前
科研通AI6应助xyy采纳,获得30
12秒前
大气早晨发布了新的文献求助10
12秒前
Ava应助wang1030采纳,获得10
14秒前
冰激凌发布了新的文献求助10
15秒前
15秒前
胆大璐完成签到 ,获得积分10
16秒前
科研通AI2S应助阔达皮卡丘采纳,获得10
17秒前
17秒前
完美世界应助vily采纳,获得10
17秒前
奶油蜜豆卷完成签到,获得积分10
18秒前
lijiaoyang完成签到,获得积分10
19秒前
Diana完成签到,获得积分10
19秒前
Hello应助hbhbj采纳,获得10
19秒前
19秒前
懵懂小尉完成签到,获得积分10
20秒前
zw发布了新的文献求助10
21秒前
21秒前
JamesPei应助那都通采纳,获得10
22秒前
乐乐应助嗡嗡嗡采纳,获得10
22秒前
泡芙完成签到,获得积分10
23秒前
24秒前
温暖香菱完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838