Deep Reinforcement Learning: A Survey

强化学习 人工智能 计算机科学 模仿 机器学习 心理学 社会心理学
作者
Xu Wang,Sen Wang,Xingxing Liang,Dawei Zhao,Jincai Huang,Xin Xu,Bin Dai,Qiguang Miao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:249
标识
DOI:10.1109/tnnls.2022.3207346
摘要

Deep reinforcement learning (DRL) integrates the feature representation ability of deep learning with the decision-making ability of reinforcement learning so that it can achieve powerful end-to-end learning control capabilities. In the past decade, DRL has made substantial advances in many tasks that require perceiving high-dimensional input and making optimal or near-optimal decisions. However, there are still many challenging problems in the theory and applications of DRL, especially in learning control tasks with limited samples, sparse rewards, and multiple agents. Researchers have proposed various solutions and new theories to solve these problems and promote the development of DRL. In addition, deep learning has stimulated the further development of many subfields of reinforcement learning, such as hierarchical reinforcement learning (HRL), multiagent reinforcement learning, and imitation learning. This article gives a comprehensive overview of the fundamental theories, key algorithms, and primary research domains of DRL. In addition to value-based and policy-based DRL algorithms, the advances in maximum entropy-based DRL are summarized. The future research topics of DRL are also analyzed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17完成签到,获得积分10
1秒前
海孩子完成签到,获得积分10
6秒前
薛乎虚完成签到 ,获得积分10
6秒前
艳艳宝完成签到 ,获得积分10
11秒前
失眠的笑翠完成签到 ,获得积分10
12秒前
13秒前
完美世界应助小白采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
gelinhao完成签到,获得积分10
16秒前
chi发布了新的文献求助10
17秒前
彭于彦祖应助科研通管家采纳,获得150
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
小杭76应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
小杭76应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
风清扬应助科研通管家采纳,获得150
22秒前
养猪大户完成签到 ,获得积分10
22秒前
小杭76应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得50
22秒前
量子星尘发布了新的文献求助10
22秒前
carly完成签到 ,获得积分10
24秒前
赖建琛完成签到 ,获得积分10
26秒前
秀丽笑容完成签到 ,获得积分10
27秒前
30秒前
四季豆完成签到,获得积分10
30秒前
那些兔儿完成签到 ,获得积分0
33秒前
所所应助闪闪灵雁采纳,获得10
34秒前
四季豆发布了新的文献求助10
35秒前
小羊完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
CodeCraft应助四季豆采纳,获得10
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966