Deep Reinforcement Learning: A Survey

强化学习 人工智能 计算机科学 模仿 机器学习 心理学 社会心理学
作者
Xu Wang,Sen Wang,Xingxing Liang,Dawei Zhao,Jincai Huang,Xin Xu,Bin Dai,Qiguang Miao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:249
标识
DOI:10.1109/tnnls.2022.3207346
摘要

Deep reinforcement learning (DRL) integrates the feature representation ability of deep learning with the decision-making ability of reinforcement learning so that it can achieve powerful end-to-end learning control capabilities. In the past decade, DRL has made substantial advances in many tasks that require perceiving high-dimensional input and making optimal or near-optimal decisions. However, there are still many challenging problems in the theory and applications of DRL, especially in learning control tasks with limited samples, sparse rewards, and multiple agents. Researchers have proposed various solutions and new theories to solve these problems and promote the development of DRL. In addition, deep learning has stimulated the further development of many subfields of reinforcement learning, such as hierarchical reinforcement learning (HRL), multiagent reinforcement learning, and imitation learning. This article gives a comprehensive overview of the fundamental theories, key algorithms, and primary research domains of DRL. In addition to value-based and policy-based DRL algorithms, the advances in maximum entropy-based DRL are summarized. The future research topics of DRL are also analyzed and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪星发布了新的文献求助10
刚刚
emm发布了新的文献求助10
刚刚
1秒前
YU发布了新的文献求助10
1秒前
个性的天玉完成签到,获得积分10
1秒前
1秒前
lws完成签到,获得积分10
1秒前
mmy完成签到 ,获得积分10
1秒前
hhhg发布了新的文献求助20
1秒前
爆米花应助777采纳,获得10
2秒前
2秒前
HSY完成签到,获得积分10
3秒前
3秒前
zcs发布了新的文献求助10
3秒前
徐爱琳发布了新的文献求助10
4秒前
位伟发布了新的文献求助10
5秒前
5秒前
lcx发布了新的文献求助10
6秒前
6秒前
斯文败类应助gege采纳,获得10
7秒前
浮游应助大胆夏柳采纳,获得10
8秒前
8秒前
8秒前
传奇3应助achaia采纳,获得30
9秒前
9秒前
9秒前
Ahren发布了新的文献求助10
9秒前
777完成签到,获得积分10
10秒前
10秒前
zzx发布了新的文献求助10
11秒前
Synan完成签到,获得积分10
11秒前
善学以致用应助风中小蕊采纳,获得10
12秒前
牛不可发布了新的文献求助10
13秒前
13秒前
13秒前
Owen应助柔弱凛采纳,获得10
13秒前
好好好发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571591
求助须知:如何正确求助?哪些是违规求助? 4656832
关于积分的说明 14718078
捐赠科研通 4597681
什么是DOI,文献DOI怎么找? 2523318
邀请新用户注册赠送积分活动 1494146
关于科研通互助平台的介绍 1464292