Deep Reinforcement Learning: A Survey

强化学习 人工智能 计算机科学 模仿 机器学习 心理学 社会心理学
作者
Xu Wang,Sen Wang,Xingxing Liang,Dawei Zhao,Jincai Huang,Xin Xu,Bin Dai,Qiguang Miao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:249
标识
DOI:10.1109/tnnls.2022.3207346
摘要

Deep reinforcement learning (DRL) integrates the feature representation ability of deep learning with the decision-making ability of reinforcement learning so that it can achieve powerful end-to-end learning control capabilities. In the past decade, DRL has made substantial advances in many tasks that require perceiving high-dimensional input and making optimal or near-optimal decisions. However, there are still many challenging problems in the theory and applications of DRL, especially in learning control tasks with limited samples, sparse rewards, and multiple agents. Researchers have proposed various solutions and new theories to solve these problems and promote the development of DRL. In addition, deep learning has stimulated the further development of many subfields of reinforcement learning, such as hierarchical reinforcement learning (HRL), multiagent reinforcement learning, and imitation learning. This article gives a comprehensive overview of the fundamental theories, key algorithms, and primary research domains of DRL. In addition to value-based and policy-based DRL algorithms, the advances in maximum entropy-based DRL are summarized. The future research topics of DRL are also analyzed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
関电脑完成签到,获得积分10
刚刚
刚刚
Lucas应助mode采纳,获得10
刚刚
鲸鱼发布了新的文献求助10
1秒前
彭于晏应助mika采纳,获得10
1秒前
dxp发布了新的文献求助10
1秒前
Soul发布了新的文献求助10
1秒前
开元完成签到,获得积分10
1秒前
负责石头发布了新的文献求助10
2秒前
李爱国应助反方向的钟采纳,获得30
2秒前
2秒前
2秒前
从容襄发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
qwepirt发布了新的文献求助10
3秒前
狗宅发布了新的文献求助10
4秒前
花花发布了新的文献求助10
4秒前
好困发布了新的文献求助10
4秒前
4秒前
彩色夜阑完成签到,获得积分10
4秒前
4秒前
4秒前
追梦人完成签到,获得积分10
4秒前
5秒前
大个应助wlm采纳,获得10
5秒前
F_echo完成签到 ,获得积分10
5秒前
荣九山完成签到,获得积分10
5秒前
7秒前
7秒前
盛景洲发布了新的文献求助10
7秒前
今天发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
舒适一手发布了新的文献求助10
10秒前
Xuan完成签到,获得积分10
10秒前
xiaodong发布了新的文献求助10
10秒前
詹雪晴发布了新的文献求助10
11秒前
负责石头完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646