Charge Transfer Dynamics of Doped Graphene Electrodes for Organic Light-Emitting Diodes

石墨烯 材料科学 有机发光二极管 光电子学 阴极 兴奋剂 工作职能 电极 纳米技术 图层(电子) 物理化学 化学
作者
Ick-Joon Park,Tae In Kim,Sung‐Yool Choi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (38): 43907-43916 被引量:8
标识
DOI:10.1021/acsami.2c12006
摘要

Atomically thin graphene has attracted immense attention as a future transparent electrode for flat-panel displays owing to its excellent conductivity, optical transparency, and flexibility. In particular, a graphene doping process is essential for implementing graphene-based high-performance devices, and the development of a transparent cathode with a low work function is required to simplify the integration process of thin-film transistors and organic light-emitting diodes (OLEDs) into active matrix displays. In this study, a transparent n-doped graphene cathode is proposed for implementing inverted OLEDs through two types of cesium (Cs)-based doping techniques: a dipping method using wet chemicals and an evaporation method under a vacuum atmosphere. The changes in the chemical structures and work functions of the n-doped graphene electrodes, as well as their surface morphologies and transmittances, were systematically investigated. The n-type doping mechanism of graphene was investigated, and a close relationship between the electrical charge transfer characteristics of graphene transistors and the formation of C-O-Cs complexes was revealed. Finally, an effective Cs-doped graphene electrode was developed, exhibiting a dramatically decreased work function while maintaining high transmittance; therefore, the Cs-doped graphene cathode was successfully integrated with inverted OLEDs with a bottom-light emission structure that exhibited enhanced external quantum efficiency of graphene cathode-based OLEDs. Thus, our findings provide a better understanding of the doping strategies and potential of n-doped graphene as a transparent cathode for developing high-performance future displays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助漂亮幻莲采纳,获得10
1秒前
张张张完成签到 ,获得积分10
2秒前
bofu发布了新的文献求助10
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
机智的傲白应助布丁果冻采纳,获得10
6秒前
wwc应助勤奋板凳采纳,获得10
6秒前
鸡鱼蚝发布了新的文献求助10
6秒前
9秒前
酷炫小馒头完成签到,获得积分10
9秒前
蒋时晏举报兮曦123求助涉嫌违规
10秒前
11秒前
小羊完成签到,获得积分10
12秒前
我真的好饿完成签到 ,获得积分10
12秒前
why完成签到,获得积分10
13秒前
细心的代天完成签到 ,获得积分10
13秒前
鸡鱼蚝完成签到,获得积分10
13秒前
John发布了新的文献求助10
13秒前
酷波er应助迷路曼雁采纳,获得10
14秒前
eternal发布了新的文献求助10
14秒前
yy家的小哥哥完成签到,获得积分10
14秒前
yoyo122发布了新的文献求助10
16秒前
布丁果冻完成签到,获得积分20
16秒前
18秒前
Dongfu_FA完成签到,获得积分10
18秒前
19秒前
bofu发布了新的文献求助10
19秒前
8R60d8应助布丁果冻采纳,获得10
19秒前
20秒前
李爱国应助伶俐绿柏采纳,获得10
21秒前
21秒前
21秒前
yoyo122完成签到,获得积分10
22秒前
24秒前
思源应助小凯同学采纳,获得10
24秒前
啊啊啊发布了新的文献求助10
26秒前
700w完成签到 ,获得积分0
26秒前
bofu发布了新的文献求助30
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574