In vivo maternal haploid induction based on genome editing of DMP in Brassica oleracea

生物 甘蓝 回交 倍性 十字花科 小孢子 加倍单倍体 芸苔属 基因组 自拍 油菜籽 油菜 油菜 遗传学 植物 生物技术 基因 雄蕊 花粉 人口学 社会学 人口
作者
Xinyu Zhao,Kaiwen Yuan,Yuxiang Liu,Nan Zhang,Limei Yang,Yangyong Zhang,Yong Wang,Jialei Ji,Zhiyuan Fang,Fengqing Han,Honghao Lv
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:20 (12): 2242-2244 被引量:16
标识
DOI:10.1111/pbi.13934
摘要

Brassica oleracea is an important plant species that includes many globally cultivated vegetable crops (cole crops), such as cabbage, broccoli, cauliflower, kale and Brussels sprouts. These plants provide human beings with not only plentiful nutrients such as carotenoids, minerals, vitamins A and C, dietary fibre but also unique health-promoting compounds like glucosinolates (Xu et al., 2014). Heterosis utilization in crops, including cole vegetables, requires the development of homozygous lines usually generated by multiple rounds of selfing or backcrossing (Zhong et al., 2019). Doubled haploid (DH) technology enables the generation of complete homozygous lines within two generations, dramatically accelerating the breeding progress (Zhong et al., 2020). However, traditional haploid induction (HI) in Brassica oleracea depends on an in vitro anther/microspore cultivation approach, which is not only complicated but also highly limited by plant genotype. In recent years, MTL/NLD/ZmPLA1, ZmDMP and ZmPOD65 were found to be responsible for inducing in vivo maternal haploid embryos in maize (Jiang et al., 2022 and references therein). Although orthologues of MTL/NLD/ZmPLA1 have not been found in dicots, ZmDMP-like genes are present in dicots and have been demonstrated to trigger in vivo maternal HI in Arabidopsis, Medicago truncatula, tomato, rapeseed and tobacco (Li et al., 2022; Wang et al., 2022; Zhong et al., 2020, 2022a,b). However, it is still not known whether this approach can be applied to cole crops. We found fifteen putative DMP-like proteins in the Brassica oleracea genome. Among the proteins identified above, BoC04.DMP9 and BoC03.DMP9 were highly similar to ZmDMP, with 61% and 60% sequence identity, respectively, and they were assigned to a subclade together with AtDMP9 and AtDMP8 (Figure 1a). qRT–PCR analysis indicated that both BoC03.DMP9 and BoC04.DMP9 are highly expressed in pollen and flower buds, with BoC03.DMP9 being more highly expressed (Figure 1b). We cloned BoC03.DMP9 and BoC04.DMP9 from multiple cabbage inbred lines. Intriguingly, BoC04.DMP9 was lost in these cabbage lines due to a 1-bp deletion in exon. We further investigated DMPs in the Brassica genus, which showed that DMP8 was completely lost, and DMP9 experienced duplication and then lost. Both A and B genomes retained two normal DMP9 genes, whereas in the C genome, differential DMP9 orthologues were lost, including BoC04.DMP9 in B. oleracea and BnaC03g03890D in B. napus, indicating that the loss of DMP9 is a recent event after the formation of B. napus. We employed the CRISPR/Cas9 approach to knock out BoC03.DMP9 in the cabbage ‘MW’ background. A CRISPR/Cas9 construct with a specific guide RNA sequence targeting the exon of BoC03.DMP9 was generated and introduced into cabbage by Agrobacterium-mediated transformation (Figure 1c). We obtained 8 lines with mutations in the target region, among which two homozygous or biallelic boc03.dmp9 mutants with deletions/insertions that led to frameshift and premature termination were selected for further studies (Figure 1d,e). Upon selfing or serving as pollen donors for crossing, the boc03.dmp9 mutants showed significantly reduced seed sets (Figure 1f,g). To test whether boc03.dmp9 mutants could induce the production of haploids, we crossed boc03.dmp9 mutants (as male parents) with the tester line ms4, a curly kale male-sterile line. ms4 is an ideal HI testing material owing to its two characteristics: (i) completely green, a natural phenotype resulting from the abolishment of anthocyanin accumulation (Figure 1h), and (ii) male sterility, which prevents the occurrence of selfing. We found that six out of 255 progenies exhibited a completely green phenotype (Figure 1i). Flow cytometry analysis revealed that all six non-purple plants were true haploids, which corresponded to a haploid induction rate (HIR) of 2.35% (Figure 1j,k). We further carried out a set of tests using boc03.dmp9 mutants to cross cabbage materials, including two inbred lines (19Z2053 and 2039) and one hybrid (2085). Molecular markers showing InDel polymorphism between boc03.dmp9 and the female parents were developed to screen all the progenies. Haploid would show genotype identical to the corresponding female (Figure 1l). Potential haploids identified by molecular markers were further confirmed by cytometry analysis and plant phenotyping. The HIRs ranged from 0.41% to 1.60% (Figure 1k). Haploids derived from the 19Z2053 × boc03.dmp9 and 2039 × boc03.dmp9 crosses were morphologically similar to the corresponding female parent (Figure 1m,n) but had smaller organs and were sterile (Figure 1o–q). We also tested the HI ability by the use of the boc03.dmp9 as a female, but no haploids were identified after crossing (Figure 1k). In summary, we demonstrated that boc03.dmp9 mutants could induce in vivo maternal haploids in cole crops. The reported DMP-based in vivo HI system offers a novel, simple and cost-effective DH technology without genotype recalcitrance. Importantly, this system is applicable to one-step creation of homozygous male-sterile lines for hybrid seed production. In summary, this HI system could accelerate cultivar improvement and genetic studies of these important vegetable crops and provides reference information for extending this system to other dicotyledonous crop species. This work was supported by grants from the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS) and China Agriculture Research System of MOF and MARA (CARS−23). The authors declare no conflict of interest. F.H. and H.L. conceived and designed the work. X.Z., K.Y., Y.L. and N.Z. performed the experiments. F.H. and X.Z. wrote and revised the manuscript. L.Y., Y.Z., Y.W., J.J. and Z.F. analysed the data and revised the manuscript. All authors have read and approved the final manuscript.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰糕完成签到,获得积分10
3秒前
5秒前
852应助完犊子采纳,获得10
9秒前
ruochenzu发布了新的文献求助10
10秒前
不想洗碗完成签到 ,获得积分10
12秒前
const完成签到,获得积分10
16秒前
hjx完成签到 ,获得积分10
16秒前
稳重的尔安完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
缓慢的饼干完成签到 ,获得积分10
19秒前
saturn完成签到 ,获得积分10
19秒前
金桔希子完成签到,获得积分10
20秒前
Breeze完成签到 ,获得积分10
20秒前
20秒前
昏睡的眼神完成签到 ,获得积分10
21秒前
文心同学完成签到,获得积分0
22秒前
demom完成签到 ,获得积分10
24秒前
duckspy完成签到 ,获得积分10
24秒前
完犊子发布了新的文献求助10
26秒前
普鲁卡因发布了新的文献求助30
27秒前
chenkj完成签到,获得积分10
29秒前
EricSai完成签到,获得积分10
29秒前
ikun完成签到,获得积分10
29秒前
李李发布了新的文献求助10
29秒前
章鱼小丸子完成签到 ,获得积分10
29秒前
byby完成签到,获得积分10
31秒前
THEO完成签到 ,获得积分10
32秒前
李健的小迷弟应助完犊子采纳,获得10
33秒前
34秒前
乐观的问兰完成签到 ,获得积分10
35秒前
书生完成签到,获得积分10
35秒前
朱佳宁完成签到 ,获得积分10
36秒前
Master完成签到 ,获得积分10
37秒前
怕孤独的香菇完成签到 ,获得积分10
37秒前
光亮冬寒完成签到,获得积分10
38秒前
FashionBoy应助李李采纳,获得10
39秒前
搬砖完成签到 ,获得积分10
40秒前
kingmp2完成签到 ,获得积分10
40秒前
盼盼完成签到,获得积分10
41秒前
zcm1999完成签到 ,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022