Machine Learning-Powered Encrypted Network Traffic Analysis: A Comprehensive Survey

计算机科学 加密 交通分类 流量分析 深包检验 有效载荷(计算) 异常检测 鉴定(生物学) 工作流程 交通整形 交通生成模型 情报分析 数据挖掘 明文 网络数据包 计算机安全 数据科学 网络流量控制 计算机网络 数据库 植物 生物
作者
Meng Shen,Ke Ye,Xingtong Liu,Liehuang Zhu,Jiawen Kang,Shui Yu,Qi Li,Ke Xu
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 791-824 被引量:68
标识
DOI:10.1109/comst.2022.3208196
摘要

Traffic analysis is the process of monitoring network activities, discovering specific patterns, and gleaning valuable information from network traffic. It can be applied in various fields such as network assert probing and anomaly detection. With the advent of network traffic encryption, however, traffic analysis becomes an arduous task. Due to the invisibility of packet payload, traditional traffic analysis methods relying on capturing valuable information from plaintext payload are likely to lose efficacy. Machine learning has been emerging as a powerful tool to extract informative features without getting access to payload, and thus is widely employed in encrypted traffic analysis. In this paper, we present a comprehensive survey on recent achievements in machine learning-powered encrypted traffic analysis. To begin with, we review the literature in this area and summarize the analysis goals that serve as the basis for literature classification. Then, we abstract the workflow of encrypted traffic analysis with machine learning tools, including traffic collection, traffic representation, traffic analysis method, and performance evaluation. For the surveyed studies, the requirements of classification granularity and information timeliness may vary a lot for different analysis goals. Hence, in terms of the goal of traffic analysis, we present a comprehensive review on existing studies according to four categories: network asset identification, network characterization, privacy leakage detection, and anomaly detection. Finally, we discuss the challenges and directions for future research on encrypted traffic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小智完成签到,获得积分10
刚刚
杨66发布了新的文献求助10
1秒前
今后应助苹果白凡采纳,获得10
1秒前
wanci应助美好的刺猬采纳,获得10
2秒前
Pumpkin完成签到,获得积分10
3秒前
三分恬发布了新的文献求助10
3秒前
超级的问筠完成签到,获得积分10
4秒前
zfc93完成签到,获得积分10
5秒前
香蕉觅云应助云澈采纳,获得10
6秒前
luojh03发布了新的文献求助10
6秒前
wklike完成签到,获得积分10
7秒前
伶俐的寒凡完成签到 ,获得积分10
8秒前
个性的傲安完成签到,获得积分10
8秒前
8秒前
9秒前
杨66完成签到,获得积分10
9秒前
烟花应助tiantian8715采纳,获得50
9秒前
lisa完成签到 ,获得积分10
9秒前
9秒前
川盈完成签到,获得积分10
11秒前
平常紫安关注了科研通微信公众号
12秒前
上官若男应助YIWENNN采纳,获得10
13秒前
yao完成签到,获得积分10
13秒前
13秒前
YY完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
玻璃外的世界完成签到,获得积分10
15秒前
16秒前
小蘑菇应助和谐耳机采纳,获得20
16秒前
宋江他大表哥完成签到,获得积分10
17秒前
小雨完成签到,获得积分10
18秒前
lq发布了新的文献求助10
19秒前
cccc完成签到,获得积分10
19秒前
King完成签到 ,获得积分10
19秒前
20秒前
共享精神应助ding采纳,获得10
20秒前
21秒前
科研通AI5应助默默的难破采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740738
求助须知:如何正确求助?哪些是违规求助? 3283592
关于积分的说明 10035967
捐赠科研通 3000373
什么是DOI,文献DOI怎么找? 1646451
邀请新用户注册赠送积分活动 783642
科研通“疑难数据库(出版商)”最低求助积分说明 750411