Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study

心情 双相情感障碍 萧条(经济学) 情绪障碍 精神科 医学 队列 前瞻性队列研究 观察研究 心理学 临床心理学 儿科 焦虑 内科学 宏观经济学 经济
作者
Heon‐Jeong Lee,Chul‐Hyun Cho,Taek Lee,Jaegwon Jeong,Ji Won Yeom,Sojeong Kim,Sehyun Jeon,Ju Yeon Seo,Eunsoo Moon,Ji Hyun Baek,Dong Yeon Park,Se Joo Kim,Tae Hyon Ha,Boseok Cha,Hee-Ju Kang,Yong-Min Ahn,Yujin Lee,Jung‐Been Lee,Leen Kim
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (12): 5636-5644 被引量:53
标识
DOI:10.1017/s0033291722002847
摘要

Abstract Background Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones. Methods The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy. Results Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively. Conclusions We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咯噔完成签到,获得积分10
刚刚
科研通AI6应助powerli采纳,获得10
1秒前
222333发布了新的文献求助10
1秒前
微笑奇迹发布了新的文献求助10
2秒前
沐寒完成签到,获得积分10
2秒前
xiaojie完成签到 ,获得积分10
2秒前
3秒前
科研通AI6应助terryok采纳,获得10
3秒前
Jasper应助sugkook采纳,获得10
3秒前
3秒前
张豪杰发布了新的文献求助10
4秒前
5秒前
一二发布了新的文献求助10
5秒前
Jager.Z发布了新的文献求助10
6秒前
1nnoy发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
紫焰完成签到 ,获得积分10
8秒前
岁岁发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
lijinbei发布了新的文献求助10
9秒前
9秒前
9秒前
852应助HJJHJH采纳,获得10
9秒前
11秒前
LI电池完成签到,获得积分10
11秒前
晏清发布了新的文献求助10
11秒前
11秒前
11秒前
小仙女发布了新的文献求助10
12秒前
12秒前
宋23完成签到,获得积分10
12秒前
12秒前
12秒前
科研通AI2S应助lixm采纳,获得10
12秒前
13秒前
13秒前
华仔应助1nnoy采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728