亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study

心情 双相情感障碍 萧条(经济学) 情绪障碍 精神科 医学 队列 前瞻性队列研究 观察研究 心理学 临床心理学 儿科 焦虑 内科学 宏观经济学 经济
作者
Heon‐Jeong Lee,Chul‐Hyun Cho,Taek Lee,Jaegwon Jeong,Ji Won Yeom,Sojeong Kim,Sehyun Jeon,Ju Yeon Seo,Eunsoo Moon,Ji Hyun Baek,Dong Yeon Park,Se Joo Kim,Tae Hyon Ha,Boseok Cha,Hee-Ju Kang,Yong-Min Ahn,Yujin Lee,Jung‐Been Lee,Leen Kim
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (12): 5636-5644 被引量:55
标识
DOI:10.1017/s0033291722002847
摘要

Abstract Background Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones. Methods The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy. Results Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively. Conclusions We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Lenna45完成签到 ,获得积分10
12秒前
21秒前
鹿呦完成签到 ,获得积分10
25秒前
瑞葛完成签到,获得积分10
47秒前
科研通AI6.1应助瑞葛采纳,获得10
1分钟前
1分钟前
XIAOBAI完成签到,获得积分10
1分钟前
1分钟前
zsyf完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
萝卜发布了新的文献求助10
2分钟前
uss完成签到,获得积分10
2分钟前
SciGPT应助萝卜采纳,获得10
2分钟前
3分钟前
3分钟前
呆萌念云完成签到 ,获得积分10
3分钟前
qqqq完成签到 ,获得积分10
3分钟前
王饱饱完成签到 ,获得积分10
3分钟前
Jasper应助务实的翠风采纳,获得30
3分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
完美世界应助caspar采纳,获得10
4分钟前
熊猫完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739528
求助须知:如何正确求助?哪些是违规求助? 5387168
关于积分的说明 15339759
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624099
邀请新用户注册赠送积分活动 1572789
关于科研通互助平台的介绍 1529589