Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study

心情 双相情感障碍 萧条(经济学) 情绪障碍 精神科 医学 队列 前瞻性队列研究 观察研究 心理学 临床心理学 儿科 焦虑 内科学 宏观经济学 经济
作者
Heon‐Jeong Lee,Chul‐Hyun Cho,Taek Lee,Jaegwon Jeong,Ji Won Yeom,Sojeong Kim,Sehyun Jeon,Ju Yeon Seo,Eunsoo Moon,Ji Hyun Baek,Dong Yeon Park,Se Joo Kim,Tae Hyon Ha,Boseok Cha,Hee-Ju Kang,Yong-Min Ahn,Yujin Lee,Jung-Been Lee,Leen Kim
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (12): 5636-5644 被引量:25
标识
DOI:10.1017/s0033291722002847
摘要

Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得20
1秒前
思源应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
robert3324应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
追寻紫安发布了新的文献求助10
2秒前
向xiang123发布了新的文献求助10
2秒前
changyongcheng完成签到 ,获得积分10
2秒前
一汁蟹发布了新的文献求助10
3秒前
3秒前
天天快乐应助白樱恋曲采纳,获得10
3秒前
4秒前
4秒前
4秒前
ewk发布了新的文献求助10
5秒前
5秒前
迷你的思真完成签到,获得积分10
5秒前
5秒前
6秒前
jessia发布了新的文献求助10
6秒前
7秒前
kk发布了新的文献求助10
8秒前
8秒前
Cindy驳回了Ava应助
8秒前
CipherSage应助旧梦如烟采纳,获得10
8秒前
雁枫完成签到,获得积分10
9秒前
9秒前
大伟完成签到,获得积分10
9秒前
charlins完成签到,获得积分10
9秒前
baike687发布了新的文献求助10
10秒前
10秒前
kk99发布了新的文献求助10
10秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542