A retrospective cohort study on predicting infants at a risk of defaulting routine immunization in Uganda using machine learning models

医学 逻辑回归 麻疹 朴素贝叶斯分类器 违约 支持向量机 人工智能 随机森林 机器学习 接种疫苗 儿科 计算机科学 免疫学 内科学 财务 经济
作者
Bartha Alexandra Nantongo,Josephine Nabukenya,Peter Nabende,John Kamulegeya
出处
期刊:JAMIA open [Oxford University Press]
卷期号:7 (4)
标识
DOI:10.1093/jamiaopen/ooae132
摘要

Abstract Objectives Using machine learning models to predict infants at risk of defaulting routine immunization (RI) and identify significant features for Uganda. Materials and Methods Principal component analysis reduced dimensionality. Datasets were balanced using synthetic minority over-sampling technique. k-Nearest Neighbors, Decision Trees, Random Forests (RFs), Support Vector Machine (SVM), Naïve-Bayes, Logistic Regression (LR), XGBoost, Adoptive-Boosting, and Gradient-Boosting were used on Uganda’s 2016 Demographic and health survey data with social-economic and demographic factors as predictors. Experiments with and without K-fold cross-validation were performed. Models were evaluated for accuracy, recall, precision, and area under a curve (AUC). Results and Discussion Experimental results revealed that the rate of defaulting increases as an infant’s age increases at 5.3% Bacille Calmette-Guérin (BCG), 7.3% pentavalentI, 22.9% pentavalentIII, and 22.1% for measles. Significant predictors for BCG were immunization card, polio0, cluster altitude. Reception of pneumococcal1, BCG, and district for pentavalentI; polio3, pentavalentII for pentavalentIII; polio active and pentavalentIII for measles. RF had the best performance at predicting vaccine defaulting with 96%, 95%, 94%, 84% accuracy for BCG, PentavalentI, pentavalentIII, measles, respectively. Similarly, RF had the same precision, recall, AUC at 1.0. However, XGBoost, SVM, LR displayed the worst discriminatory power among infants who received the vaccine from defaulters with AUC ≤0.57. Conclusion Immunization card, preceding vaccines reception, and district were the most influential predictors. RF was the best classifier among the 9 models to predict defaulting RI. The study recommends regular outreaches, daily vaccination, provision of immunization cards, and accessible water sources to reduce defaulting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGBond完成签到,获得积分10
刚刚
孔雀翎发布了新的文献求助10
刚刚
寂寞的灵完成签到,获得积分10
1秒前
后知后觉发布了新的文献求助10
1秒前
百十余完成签到,获得积分10
1秒前
1秒前
1秒前
Zhaorf完成签到,获得积分10
2秒前
沉默紫槐完成签到,获得积分10
2秒前
深情安青应助易达采纳,获得10
2秒前
默默海露发布了新的文献求助10
4秒前
5秒前
flyfish完成签到,获得积分10
5秒前
36456657应助chen采纳,获得10
5秒前
每念至此完成签到,获得积分10
6秒前
大力黑米完成签到 ,获得积分10
7秒前
123发布了新的文献求助30
7秒前
搜集达人应助gaos采纳,获得10
7秒前
hengy发布了新的文献求助10
7秒前
杳鸢应助Xenia采纳,获得10
8秒前
kekekelili完成签到,获得积分10
9秒前
9秒前
zhonghbush发布了新的文献求助10
10秒前
reck发布了新的文献求助10
10秒前
10秒前
10秒前
kimcandy完成签到,获得积分10
10秒前
华仔应助任品贤采纳,获得10
11秒前
无花果应助急雪回风采纳,获得10
11秒前
13秒前
曾经的灵完成签到,获得积分20
13秒前
bkagyin应助小宇采纳,获得10
13秒前
许之北完成签到 ,获得积分10
13秒前
13秒前
船舵发布了新的文献求助10
13秒前
gaos完成签到,获得积分10
14秒前
念念发布了新的文献求助10
14秒前
An_mie完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672