A retrospective cohort study on predicting infants at a risk of defaulting routine immunization in Uganda using machine learning models

医学 逻辑回归 麻疹 朴素贝叶斯分类器 违约 支持向量机 人工智能 随机森林 机器学习 接种疫苗 儿科 计算机科学 免疫学 内科学 财务 经济
作者
Bartha Alexandra Nantongo,Josephine Nabukenya,Peter Nabende,John Kamulegeya
出处
期刊:JAMIA open [Oxford University Press]
卷期号:7 (4)
标识
DOI:10.1093/jamiaopen/ooae132
摘要

Abstract Objectives Using machine learning models to predict infants at risk of defaulting routine immunization (RI) and identify significant features for Uganda. Materials and Methods Principal component analysis reduced dimensionality. Datasets were balanced using synthetic minority over-sampling technique. k-Nearest Neighbors, Decision Trees, Random Forests (RFs), Support Vector Machine (SVM), Naïve-Bayes, Logistic Regression (LR), XGBoost, Adoptive-Boosting, and Gradient-Boosting were used on Uganda’s 2016 Demographic and health survey data with social-economic and demographic factors as predictors. Experiments with and without K-fold cross-validation were performed. Models were evaluated for accuracy, recall, precision, and area under a curve (AUC). Results and Discussion Experimental results revealed that the rate of defaulting increases as an infant’s age increases at 5.3% Bacille Calmette-Guérin (BCG), 7.3% pentavalentI, 22.9% pentavalentIII, and 22.1% for measles. Significant predictors for BCG were immunization card, polio0, cluster altitude. Reception of pneumococcal1, BCG, and district for pentavalentI; polio3, pentavalentII for pentavalentIII; polio active and pentavalentIII for measles. RF had the best performance at predicting vaccine defaulting with 96%, 95%, 94%, 84% accuracy for BCG, PentavalentI, pentavalentIII, measles, respectively. Similarly, RF had the same precision, recall, AUC at 1.0. However, XGBoost, SVM, LR displayed the worst discriminatory power among infants who received the vaccine from defaulters with AUC ≤0.57. Conclusion Immunization card, preceding vaccines reception, and district were the most influential predictors. RF was the best classifier among the 9 models to predict defaulting RI. The study recommends regular outreaches, daily vaccination, provision of immunization cards, and accessible water sources to reduce defaulting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助科研民工采纳,获得10
2秒前
灿烂千阳完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
NXK发布了新的文献求助10
3秒前
3秒前
3秒前
SciGPT应助no1isme采纳,获得10
3秒前
瓜瓜发布了新的文献求助10
3秒前
饱满的诗霜关注了科研通微信公众号
4秒前
cc应助wing采纳,获得20
4秒前
211发布了新的文献求助10
4秒前
修越完成签到,获得积分10
5秒前
CodeCraft应助Regina采纳,获得10
5秒前
情怀应助xixilamn采纳,获得10
5秒前
壮壮发布了新的文献求助10
6秒前
在水一方应助小新同学采纳,获得10
6秒前
7秒前
7秒前
Owen应助sule采纳,获得10
7秒前
7秒前
修越发布了新的文献求助10
7秒前
大模型应助荻野千寻采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
xiaowang发布了新的文献求助10
8秒前
9秒前
lintao0836完成签到,获得积分20
9秒前
9秒前
10秒前
xxx发布了新的文献求助10
10秒前
11秒前
粗心的忆山完成签到,获得积分10
11秒前
英俊的铭应助wise111采纳,获得10
12秒前
瑁mao完成签到 ,获得积分10
12秒前
Orange应助cc采纳,获得10
13秒前
阔达丹亦发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932