A retrospective cohort study on predicting infants at a risk of defaulting routine immunization in Uganda using machine learning models

医学 逻辑回归 麻疹 朴素贝叶斯分类器 违约 支持向量机 人工智能 随机森林 机器学习 接种疫苗 儿科 计算机科学 免疫学 内科学 财务 经济
作者
Bartha Alexandra Nantongo,Josephine Nabukenya,Peter Nabende,John Kamulegeya
出处
期刊:JAMIA open [Oxford University Press]
卷期号:7 (4)
标识
DOI:10.1093/jamiaopen/ooae132
摘要

Abstract Objectives Using machine learning models to predict infants at risk of defaulting routine immunization (RI) and identify significant features for Uganda. Materials and Methods Principal component analysis reduced dimensionality. Datasets were balanced using synthetic minority over-sampling technique. k-Nearest Neighbors, Decision Trees, Random Forests (RFs), Support Vector Machine (SVM), Naïve-Bayes, Logistic Regression (LR), XGBoost, Adoptive-Boosting, and Gradient-Boosting were used on Uganda’s 2016 Demographic and health survey data with social-economic and demographic factors as predictors. Experiments with and without K-fold cross-validation were performed. Models were evaluated for accuracy, recall, precision, and area under a curve (AUC). Results and Discussion Experimental results revealed that the rate of defaulting increases as an infant’s age increases at 5.3% Bacille Calmette-Guérin (BCG), 7.3% pentavalentI, 22.9% pentavalentIII, and 22.1% for measles. Significant predictors for BCG were immunization card, polio0, cluster altitude. Reception of pneumococcal1, BCG, and district for pentavalentI; polio3, pentavalentII for pentavalentIII; polio active and pentavalentIII for measles. RF had the best performance at predicting vaccine defaulting with 96%, 95%, 94%, 84% accuracy for BCG, PentavalentI, pentavalentIII, measles, respectively. Similarly, RF had the same precision, recall, AUC at 1.0. However, XGBoost, SVM, LR displayed the worst discriminatory power among infants who received the vaccine from defaulters with AUC ≤0.57. Conclusion Immunization card, preceding vaccines reception, and district were the most influential predictors. RF was the best classifier among the 9 models to predict defaulting RI. The study recommends regular outreaches, daily vaccination, provision of immunization cards, and accessible water sources to reduce defaulting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千凡发布了新的文献求助10
刚刚
年年sci发布了新的文献求助10
刚刚
慕青应助NXK采纳,获得10
刚刚
传奇3应助从容芸采纳,获得20
1秒前
Oops发布了新的文献求助10
1秒前
刘玄德发布了新的文献求助10
1秒前
机智的凡梦完成签到,获得积分10
1秒前
LRR发布了新的文献求助10
1秒前
2秒前
Lin完成签到,获得积分10
2秒前
星星炒蛋完成签到,获得积分10
2秒前
张铭哲发布了新的文献求助10
2秒前
顾矜应助qqz采纳,获得10
3秒前
MY999完成签到,获得积分10
3秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
3秒前
3秒前
竹子发布了新的文献求助20
4秒前
4秒前
4秒前
共享精神应助hopeseason采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
liuchuck驳回了Ava应助
4秒前
嘿ha发布了新的文献求助10
5秒前
Tea233发布了新的文献求助10
5秒前
共享精神应助天气晴朗采纳,获得10
5秒前
6秒前
6秒前
无极微光应助哇哈哈哈采纳,获得20
7秒前
火山啊啊啊完成签到 ,获得积分10
7秒前
慕青应助刘国建郭菱香采纳,获得10
7秒前
tangyong发布了新的文献求助10
7秒前
荒年完成签到,获得积分10
7秒前
Hedy发布了新的文献求助10
7秒前
8秒前
雪白巨人完成签到,获得积分10
8秒前
8秒前
陶醉幻丝发布了新的文献求助10
8秒前
8秒前
CipherSage应助紧张的紫文采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590