A retrospective cohort study on predicting infants at a risk of defaulting routine immunization in Uganda using machine learning models

医学 逻辑回归 麻疹 朴素贝叶斯分类器 违约 支持向量机 人工智能 随机森林 机器学习 接种疫苗 儿科 计算机科学 免疫学 内科学 财务 经济
作者
Bartha Alexandra Nantongo,Josephine Nabukenya,Peter Nabende,John Kamulegeya
出处
期刊:JAMIA open [Oxford University Press]
卷期号:7 (4)
标识
DOI:10.1093/jamiaopen/ooae132
摘要

Abstract Objectives Using machine learning models to predict infants at risk of defaulting routine immunization (RI) and identify significant features for Uganda. Materials and Methods Principal component analysis reduced dimensionality. Datasets were balanced using synthetic minority over-sampling technique. k-Nearest Neighbors, Decision Trees, Random Forests (RFs), Support Vector Machine (SVM), Naïve-Bayes, Logistic Regression (LR), XGBoost, Adoptive-Boosting, and Gradient-Boosting were used on Uganda’s 2016 Demographic and health survey data with social-economic and demographic factors as predictors. Experiments with and without K-fold cross-validation were performed. Models were evaluated for accuracy, recall, precision, and area under a curve (AUC). Results and Discussion Experimental results revealed that the rate of defaulting increases as an infant’s age increases at 5.3% Bacille Calmette-Guérin (BCG), 7.3% pentavalentI, 22.9% pentavalentIII, and 22.1% for measles. Significant predictors for BCG were immunization card, polio0, cluster altitude. Reception of pneumococcal1, BCG, and district for pentavalentI; polio3, pentavalentII for pentavalentIII; polio active and pentavalentIII for measles. RF had the best performance at predicting vaccine defaulting with 96%, 95%, 94%, 84% accuracy for BCG, PentavalentI, pentavalentIII, measles, respectively. Similarly, RF had the same precision, recall, AUC at 1.0. However, XGBoost, SVM, LR displayed the worst discriminatory power among infants who received the vaccine from defaulters with AUC ≤0.57. Conclusion Immunization card, preceding vaccines reception, and district were the most influential predictors. RF was the best classifier among the 9 models to predict defaulting RI. The study recommends regular outreaches, daily vaccination, provision of immunization cards, and accessible water sources to reduce defaulting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时运完成签到,获得积分10
刚刚
yyyrrr完成签到,获得积分10
1秒前
魔力巴啦啦完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
狂野世立完成签到,获得积分10
3秒前
老陈皮完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
隐形曼青应助郭飒采纳,获得10
4秒前
jssssssss完成签到,获得积分10
5秒前
孤独的绮烟完成签到 ,获得积分10
5秒前
5秒前
溪泉完成签到,获得积分10
5秒前
香蕉觅云应助科研喵采纳,获得10
5秒前
共享精神应助小花采纳,获得10
5秒前
6秒前
LJY发布了新的文献求助10
6秒前
7秒前
Guochunbao完成签到,获得积分10
8秒前
善学以致用应助Zer0采纳,获得10
8秒前
9秒前
XQQDD完成签到,获得积分10
9秒前
chendahuanhuan完成签到,获得积分10
9秒前
Xu完成签到,获得积分10
9秒前
10秒前
10秒前
wwxxaa完成签到,获得积分10
11秒前
12秒前
清新的水卉完成签到,获得积分10
12秒前
单纯乞完成签到,获得积分10
12秒前
edtaa完成签到 ,获得积分10
12秒前
Kuta完成签到,获得积分10
12秒前
Blummer完成签到,获得积分10
12秒前
雷雷发布了新的文献求助10
13秒前
zeyuan完成签到,获得积分10
13秒前
芽芽配茄子完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242