亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A retrospective cohort study on predicting infants at a risk of defaulting routine immunization in Uganda using machine learning models

医学 逻辑回归 麻疹 朴素贝叶斯分类器 违约 支持向量机 人工智能 随机森林 机器学习 接种疫苗 儿科 计算机科学 免疫学 内科学 财务 经济
作者
Bartha Alexandra Nantongo,Josephine Nabukenya,Peter Nabende,John Kamulegeya
出处
期刊:JAMIA open [Oxford University Press]
卷期号:7 (4)
标识
DOI:10.1093/jamiaopen/ooae132
摘要

Abstract Objectives Using machine learning models to predict infants at risk of defaulting routine immunization (RI) and identify significant features for Uganda. Materials and Methods Principal component analysis reduced dimensionality. Datasets were balanced using synthetic minority over-sampling technique. k-Nearest Neighbors, Decision Trees, Random Forests (RFs), Support Vector Machine (SVM), Naïve-Bayes, Logistic Regression (LR), XGBoost, Adoptive-Boosting, and Gradient-Boosting were used on Uganda’s 2016 Demographic and health survey data with social-economic and demographic factors as predictors. Experiments with and without K-fold cross-validation were performed. Models were evaluated for accuracy, recall, precision, and area under a curve (AUC). Results and Discussion Experimental results revealed that the rate of defaulting increases as an infant’s age increases at 5.3% Bacille Calmette-Guérin (BCG), 7.3% pentavalentI, 22.9% pentavalentIII, and 22.1% for measles. Significant predictors for BCG were immunization card, polio0, cluster altitude. Reception of pneumococcal1, BCG, and district for pentavalentI; polio3, pentavalentII for pentavalentIII; polio active and pentavalentIII for measles. RF had the best performance at predicting vaccine defaulting with 96%, 95%, 94%, 84% accuracy for BCG, PentavalentI, pentavalentIII, measles, respectively. Similarly, RF had the same precision, recall, AUC at 1.0. However, XGBoost, SVM, LR displayed the worst discriminatory power among infants who received the vaccine from defaulters with AUC ≤0.57. Conclusion Immunization card, preceding vaccines reception, and district were the most influential predictors. RF was the best classifier among the 9 models to predict defaulting RI. The study recommends regular outreaches, daily vaccination, provision of immunization cards, and accessible water sources to reduce defaulting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率绝义完成签到 ,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
热情的橙汁完成签到,获得积分10
45秒前
你讲咩完成签到 ,获得积分20
48秒前
555完成签到,获得积分10
59秒前
务实的一斩完成签到 ,获得积分10
1分钟前
555发布了新的文献求助10
1分钟前
matrixu完成签到,获得积分10
1分钟前
1分钟前
fveie发布了新的文献求助10
1分钟前
上官若男应助小叶子采纳,获得10
1分钟前
抹茶苔藓完成签到,获得积分10
1分钟前
1分钟前
小叶子完成签到,获得积分10
1分钟前
1分钟前
yzy发布了新的文献求助10
1分钟前
潇湘完成签到 ,获得积分10
1分钟前
小叶子发布了新的文献求助10
1分钟前
善学以致用应助默默善愁采纳,获得10
1分钟前
2分钟前
凤迎雪飘完成签到,获得积分10
2分钟前
科研通AI6应助shareef采纳,获得30
2分钟前
默默善愁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
sting完成签到,获得积分10
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
2分钟前
充电宝应助sting采纳,获得10
2分钟前
Jasper应助默默善愁采纳,获得10
2分钟前
仰勒完成签到 ,获得积分10
2分钟前
Nowind发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ltttyy发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
sting发布了新的文献求助10
2分钟前
1nooooo完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459100
求助须知:如何正确求助?哪些是违规求助? 4564898
关于积分的说明 14297241
捐赠科研通 4489963
什么是DOI,文献DOI怎么找? 2459464
邀请新用户注册赠送积分活动 1449127
关于科研通互助平台的介绍 1424596