Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的访冬完成签到,获得积分10
刚刚
菠萝谷波完成签到 ,获得积分10
2秒前
3秒前
1cool发布了新的文献求助10
4秒前
chenkj完成签到,获得积分10
5秒前
十二完成签到 ,获得积分0
5秒前
ikun完成签到,获得积分10
5秒前
ywindm完成签到,获得积分10
5秒前
6秒前
QH吉普完成签到 ,获得积分10
7秒前
疯狂的绝山完成签到 ,获得积分10
9秒前
wenbin完成签到,获得积分10
9秒前
heyseere完成签到,获得积分10
9秒前
amberzyc完成签到,获得积分0
10秒前
zhangshenrong完成签到 ,获得积分10
11秒前
可靠的友易完成签到 ,获得积分10
12秒前
123完成签到 ,获得积分10
13秒前
Nakjeong完成签到 ,获得积分10
14秒前
动人的诗霜完成签到 ,获得积分10
14秒前
mss12138完成签到 ,获得积分10
14秒前
Jasmineyfz完成签到 ,获得积分10
15秒前
upup完成签到 ,获得积分10
16秒前
LSY完成签到 ,获得积分10
17秒前
FL完成签到 ,获得积分10
17秒前
Moonchild完成签到 ,获得积分10
17秒前
iwsaml完成签到 ,获得积分10
17秒前
沉默洋葱完成签到,获得积分10
18秒前
纸条条完成签到 ,获得积分10
20秒前
月桂氮卓酮完成签到,获得积分10
21秒前
文心同学完成签到,获得积分0
22秒前
疯狂的绿蝶完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
27秒前
十五完成签到,获得积分10
28秒前
cata完成签到,获得积分10
28秒前
龙2024完成签到,获得积分10
28秒前
苏以禾完成签到 ,获得积分10
29秒前
八九完成签到 ,获得积分10
29秒前
开心发布了新的文献求助10
32秒前
33秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880