Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
ws完成签到,获得积分20
3秒前
丁茸茸发布了新的文献求助10
5秒前
lilili发布了新的文献求助10
6秒前
[[完成签到,获得积分10
6秒前
852应助Master采纳,获得10
8秒前
9秒前
所所应助精明的秋灵采纳,获得10
9秒前
9秒前
虚拟的铃铛完成签到,获得积分20
10秒前
丁静完成签到 ,获得积分10
13秒前
我是老大应助lilili采纳,获得10
14秒前
Zxc发布了新的文献求助10
15秒前
16秒前
18秒前
张哈哈发布了新的文献求助10
20秒前
kaio完成签到,获得积分10
21秒前
聂珩完成签到,获得积分10
25秒前
快乐滑板应助自由南珍采纳,获得10
25秒前
27秒前
30秒前
syh完成签到,获得积分10
31秒前
zqingxia完成签到,获得积分10
31秒前
澜生发布了新的文献求助10
32秒前
32秒前
Master发布了新的文献求助10
35秒前
张哈哈完成签到,获得积分10
37秒前
bd发布了新的文献求助10
38秒前
39秒前
满意的念柏完成签到 ,获得积分10
39秒前
42秒前
MOMO完成签到,获得积分10
42秒前
丁茸茸发布了新的文献求助10
42秒前
44秒前
小鹿完成签到,获得积分20
45秒前
亮liang完成签到,获得积分10
46秒前
47秒前
goodsheep完成签到 ,获得积分10
47秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396332
求助须知:如何正确求助?哪些是违规求助? 3006111
关于积分的说明 8819687
捐赠科研通 2693194
什么是DOI,文献DOI怎么找? 1475162
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675580