Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lan199623发布了新的文献求助10
刚刚
kkk发布了新的文献求助10
1秒前
1秒前
1秒前
欧阳振应助沉寂的希望采纳,获得10
1秒前
爱逃不过初心完成签到,获得积分10
1秒前
王多肉完成签到,获得积分10
2秒前
福star高照完成签到,获得积分10
3秒前
3秒前
4秒前
zydaphne完成签到 ,获得积分10
4秒前
5秒前
5秒前
suiFeng完成签到,获得积分10
5秒前
OSASACB完成签到 ,获得积分10
5秒前
syfsyfsyf完成签到,获得积分20
6秒前
LZH完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Yellue完成签到,获得积分10
7秒前
8秒前
饱满的鑫发布了新的文献求助10
8秒前
8秒前
LZH发布了新的文献求助10
8秒前
简单白风完成签到 ,获得积分10
8秒前
9秒前
9秒前
数学情缘发布了新的文献求助10
9秒前
右右发布了新的文献求助10
10秒前
10秒前
ouou发布了新的文献求助10
11秒前
11秒前
天真囧发布了新的文献求助10
12秒前
完美背包完成签到,获得积分10
12秒前
Tireastani应助hukun100采纳,获得30
12秒前
我先睡了发布了新的文献求助30
12秒前
萱1988发布了新的文献求助10
13秒前
大鲨鱼完成签到 ,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600