亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
风月难安完成签到,获得积分10
10秒前
风月难安发布了新的文献求助10
14秒前
打打应助一事无成彭某人采纳,获得10
22秒前
27秒前
Sherry完成签到 ,获得积分10
33秒前
袁青寒完成签到 ,获得积分10
34秒前
爱航哥多久了完成签到 ,获得积分10
36秒前
认真的幻姬完成签到,获得积分10
40秒前
43秒前
1分钟前
1分钟前
freya发布了新的文献求助10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
chloe完成签到,获得积分10
1分钟前
怕触电的电源完成签到 ,获得积分10
1分钟前
浮游应助chloe采纳,获得10
2分钟前
严文强完成签到,获得积分10
2分钟前
SZU_Julian完成签到,获得积分10
2分钟前
2分钟前
2分钟前
米米完成签到,获得积分10
2分钟前
醉熏的荣轩完成签到 ,获得积分10
2分钟前
米米发布了新的文献求助10
2分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
iorpi完成签到,获得积分10
3分钟前
bkagyin应助一事无成彭某人采纳,获得10
3分钟前
3分钟前
Viiigo完成签到,获得积分10
3分钟前
xiao完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
Cu完成签到 ,获得积分10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137259
求助须知:如何正确求助?哪些是违规求助? 4337127
关于积分的说明 13511092
捐赠科研通 4175660
什么是DOI,文献DOI怎么找? 2289571
邀请新用户注册赠送积分活动 1290099
关于科研通互助平台的介绍 1231727