已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大棒槌发布了新的文献求助10
刚刚
郑州12138完成签到,获得积分10
1秒前
慕青应助yuanyuan采纳,获得10
3秒前
寒冷听枫发布了新的文献求助10
3秒前
4秒前
4秒前
orixero应助JimmyY采纳,获得10
5秒前
烟花应助肖浩翔采纳,获得10
5秒前
FashionBoy应助cc采纳,获得10
7秒前
科研小白狗完成签到 ,获得积分10
7秒前
9秒前
9秒前
zhang发布了新的文献求助10
9秒前
小酒迟疑发布了新的文献求助10
10秒前
满意妙梦发布了新的文献求助10
14秒前
小丁完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
zhang完成签到,获得积分10
17秒前
洁净路灯发布了新的文献求助10
17秒前
111关注了科研通微信公众号
17秒前
刘雨森完成签到 ,获得积分10
17秒前
18秒前
19秒前
347u完成签到 ,获得积分10
19秒前
英俊的铭应助JimmyY采纳,获得10
21秒前
DRRIGHT发布了新的文献求助10
21秒前
大龙哥886应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
大龙哥886应助科研通管家采纳,获得10
22秒前
BowieHuang应助科研通管家采纳,获得10
22秒前
BowieHuang应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
cc发布了新的文献求助10
25秒前
tutu完成签到,获得积分0
25秒前
Joseph_sss完成签到 ,获得积分10
25秒前
小酒迟疑完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599588
求助须知:如何正确求助?哪些是违规求助? 4685339
关于积分的说明 14838367
捐赠科研通 4669426
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505495
关于科研通互助平台的介绍 1470868