重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆穆穆发布了新的文献求助10
刚刚
1秒前
jia发布了新的文献求助10
1秒前
文献孙完成签到,获得积分10
1秒前
1秒前
怡然的芯完成签到,获得积分10
1秒前
1秒前
Owen应助雪晴采纳,获得10
1秒前
abib完成签到,获得积分10
1秒前
伊伊发布了新的文献求助10
1秒前
田様应助Ldq采纳,获得10
2秒前
科研通AI6应助Ldq采纳,获得100
2秒前
酷波er应助Ldq采纳,获得10
2秒前
liangzai发布了新的文献求助10
2秒前
sk发布了新的文献求助10
2秒前
啊七飞完成签到,获得积分10
2秒前
刘汉淼完成签到,获得积分10
2秒前
watgos应助积极新筠采纳,获得10
2秒前
wangqianyu完成签到,获得积分10
2秒前
2秒前
研友_Zrl2pL完成签到,获得积分20
2秒前
小二郎应助eternal采纳,获得10
3秒前
一只木碗123完成签到 ,获得积分10
3秒前
小白完成签到,获得积分10
3秒前
腿毛怪完成签到,获得积分10
3秒前
yhexie发布了新的文献求助30
3秒前
skf完成签到,获得积分10
3秒前
moerr发布了新的文献求助10
3秒前
无情的听蓉完成签到,获得积分10
3秒前
知识进脑子吧完成签到 ,获得积分10
4秒前
FashionBoy应助内向无春采纳,获得10
5秒前
愉快自中完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
小慧发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
小白发布了新的文献求助10
7秒前
lemon完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590