Land Surface Temperature End-to-end Retrieval Considering the Topographic Effect using Radiative Transfer Model-driven Convolutional Neural Network

辐射传输 卷积神经网络 遥感 端到端原则 计算机科学 大气辐射传输码 环境科学 人工智能 地质学 物理 光学
作者
Xin Ye,Pengxin Wang,Jian Zhu,Yanhong Duan,Bin Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525728
摘要

Land surface temperature (LST) is a critical physical parameter affecting energy and water exchange that has attracted much attention in various fields, such as environmental protection, agriculture, and climate change. Studies on spatially continuous and high-resolution LST retrieval methods, which can be efficiently acquired using thermal infrared (TIR) remote sensing technology, have been developed for many years, resulting in various LST remote sensing products. The typical mechanism thermal radiative transfer model is based on the assumption that the land surface is flat, with the TIR remote sensing image of the spatial resolution of the enhancement of the ability to observe the land surface of the three-dimensional geometric structure of the fine observation, due to the terrain caused by the topographic effect caused by the topography of the undulation becomes non-negligible, the assumption of flat surface may cause apparent errors. Some LST retrieval algorithms considering topographic effects have also been proposed recently. However, they are still inaccessible due to dependence on emissivity or atmospheric parameters, which limits the accuracy and timeliness of the retrieval algorithms. In addition, various machine learning algorithms for end-to-end LST retrieval have been proposed, which utilize their ability to handle complex nonlinear relationships to retrieve LST without external parameters. However such models currently do not fully consider the topographic effect due to a lack of account of the radiative transfer process in undulating terrain conditions. In this study, utilizing the ability of convolutional neural networks to extract spatial features from adjacent pixels, a radiative transfer model-driven convolutional neural network (CNN) model is proposed to realize the end-to-end retrieval of LST, considering the topographic effect. During training, a computational method based on ambient radiance scattered from the surrounding adjacent pixels in the improved radiative transfer model is used to obtain a local-scale simulation dataset covering different LSTs, emissivity, terrain undulations, and atmospheric conditions. The proposed CNN model is trained on this basis, and the theoretical accuracy is evaluated using the simulation dataset. The model has been applied to long-time-series Landsat-9 TIR remote sensing images. The accuracy is verified using terrain-corrected (TC) LST products. The results show that the new method proposed in this paper can effectively eliminate the topographic effect in TIR remote sensing observations and obtain accurate LST retrieval results, requiring only brightness temperature and digital surface model data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng1235发布了新的文献求助10
1秒前
1秒前
1秒前
ZYX发布了新的文献求助10
1秒前
koi发布了新的文献求助10
1秒前
psycho完成签到,获得积分10
2秒前
3秒前
胡子完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
Owen应助小北采纳,获得10
3秒前
宋世伟完成签到,获得积分20
4秒前
L.C.完成签到,获得积分10
4秒前
等待黎明发布了新的文献求助10
4秒前
自由如风完成签到 ,获得积分10
4秒前
温乘云发布了新的文献求助10
4秒前
舞雩完成签到 ,获得积分10
5秒前
时2完成签到,获得积分10
6秒前
漂亮白云发布了新的文献求助10
6秒前
小蜻蜓完成签到,获得积分10
6秒前
北冥有鱼完成签到,获得积分10
7秒前
谦让疾发布了新的文献求助10
7秒前
7秒前
7秒前
XXXX完成签到 ,获得积分10
8秒前
8秒前
笑点低疾发布了新的文献求助10
8秒前
我是老大应助fairy采纳,获得10
8秒前
8秒前
8秒前
伶俐乌完成签到,获得积分10
8秒前
默认用户名完成签到,获得积分10
8秒前
ZZ完成签到,获得积分10
9秒前
风语村发布了新的文献求助10
9秒前
隔壁的多串君完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
ding应助温乘云采纳,获得10
9秒前
核桃完成签到,获得积分10
10秒前
丘比特应助安静啤酒采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297