DeepSN-Net: Deep Semi-smooth Newton Driven Network for Blind Image Restoration

可解释性 人工智能 图像复原 计算机科学 一般化 网络体系结构 趋同(经济学) 图像(数学) 深度学习 多样性(控制论) 图像处理 网(多面体) 数学优化 算法 数学 几何学 数学分析 计算机安全 经济增长 经济
作者
Xin Deng,Chenxiao Zhang,Lai Jiang,Jingyuan Xia,Mai Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tpami.2024.3525089
摘要

The deep unfolding network represents a promising research avenue in image restoration. However, most current deep unfolding methodologies are anchored in first-order optimization algorithms, which suffer from sluggish convergence speed and unsatisfactory learning efficiency. In this paper, to address this issue, we first formulate an improved second-order semi-smooth Newton (ISN) algorithm, transforming the original nonlinear equations into an optimization problem amenable to network implementation. After that, we propose an innovative network architecture based on the ISN algorithm for blind image restoration, namely DeepSN-Net. To the best of our knowledge, DeepSN-Net is the first successful endeavor to design a second-order deep unfolding network for image restoration, which fills the blank of this area. Furthermore, it offers several distinct advantages: 1) DeepSN-Net provides a unified framework to a variety of image restoration tasks in both synthetic and real-world contexts, without imposing constraints on the degradation conditions. 2) The network architecture is meticulously aligned with the ISN algorithm, ensuring that each module possesses robust physical interpretability. 3) The network exhibits high learning efficiency, superior restoration accuracy and good generalization ability across 11 datasets on three typical restoration tasks. The success of DeepSN-Net on image restoration may ignite many subsequent works centered around the second-order optimization algorithms, which is good for the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿白驳回了Hello应助
1秒前
1秒前
大方兔子发布了新的文献求助10
1秒前
1秒前
3秒前
Lucas应助DDdaisiki采纳,获得10
5秒前
6秒前
CAOHOU给Alvin的求助进行了留言
8秒前
林先生发布了新的文献求助10
9秒前
10秒前
所所应助hx采纳,获得10
11秒前
14秒前
大模型应助liyihua采纳,获得10
15秒前
DDdaisiki发布了新的文献求助10
15秒前
18秒前
jiangwei给jiangwei的求助进行了留言
20秒前
Jasper应助DDdaisiki采纳,获得10
20秒前
贪玩黑米应助Deiog采纳,获得10
24秒前
二十二发布了新的文献求助10
24秒前
666完成签到,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
橙子味的邱憨憨完成签到 ,获得积分10
31秒前
木木木发布了新的文献求助30
31秒前
周同学完成签到,获得积分20
31秒前
31秒前
烟花应助堕落叔叔采纳,获得10
32秒前
充电宝应助叶强采纳,获得10
34秒前
34秒前
35秒前
开心的雅柏完成签到,获得积分10
35秒前
EthanChan发布了新的文献求助10
35秒前
jenningseastera举报张张求助涉嫌违规
35秒前
36秒前
36秒前
hx完成签到,获得积分10
37秒前
zhuzhu发布了新的文献求助10
38秒前
38秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844