亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating Discovery and Design of High-Performance Solid-State Electrolytes: A Machine Learning Approach

快离子导体 电解质 离子电导率 电导率 掺杂剂 材料科学 离子 离子键合 兴奋剂 纳米技术 化学物理 计算机科学 工程物理 化学 光电子学 物理 物理化学 电极 有机化学
作者
Ram Sewak,Vishnu Sudarsanan,Hemant Kumar
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
标识
DOI:10.1039/d4cp04043k
摘要

Solid-state batteries (SSBs) have the potential to fulfil the increasing global energy requirement, outperforming their liquid electrolyte counterparts. However, the progress in SSB development is hindered by the conventional approach of screening solid-state electrolytes (SSEs), which relies on human knowledge, introducing biases and requiring a time-consuming, resource-intensive trial-and-error process. As a result, a wide range of promising Li-containing structures remain unexplored. To accelerate the search for optimal SSE materials, it is crucial to understand the chemical and structural factors that govern ion transport within a crystalline lattice. We utilize logistic regression-based machine learning (ML) to identify and quantify key physio-chemical features influencing ion mobility in NASICON compounds. The dopant-related features that influence the ionic conductivity are further used to design doped SSEs for Li-ion batteries. Our innovative design approach results in NASICON electrolytes with significantly improved migration barriers and ionic conductivity, validated through density functional theory-based calculations. Specifically, this approach successfully identifies two doped SSEs with high ionic conductivity: Li2Mg0.5Ge1.5(PO4)3 and Li1.667Y0.667Ge1.333(PO4)3. Li2Mg0.5Ge1.5(PO4)3 has the lowest barrier energy of 0.261 eV, surpassing the previously best-known doped material, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), which has a migration barrier of 0.37 eV. Additionally, Li1.667Y0.667Ge1.333(PO4)3 is identified to have the second-lowest migration barrier height of 0.365 eV. By focusing the training of the machine learning model on a specific class of materials, our approach significantly reduces the time, resources, and size of the dataset required to discover novel materials with targeted properties. This methodology is readily adaptable to the design of materials in various other fields, including catalysis and structural materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若尘完成签到 ,获得积分20
刚刚
追寻善斓完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
8秒前
九日橙完成签到 ,获得积分10
9秒前
10秒前
FashionBoy应助刻苦的源智采纳,获得10
11秒前
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
从容芮应助科研通管家采纳,获得30
18秒前
852应助科研通管家采纳,获得10
18秒前
21秒前
21秒前
25秒前
打打应助772829采纳,获得30
26秒前
量子星尘发布了新的文献求助10
26秒前
靖123456发布了新的文献求助10
29秒前
ZXD1989完成签到 ,获得积分10
37秒前
37秒前
38秒前
量子星尘发布了新的文献求助50
40秒前
772829发布了新的文献求助30
43秒前
45秒前
打工不可能完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
51秒前
善良的白昼完成签到,获得积分10
52秒前
好巧完成签到,获得积分10
53秒前
772829完成签到,获得积分10
54秒前
54秒前
量子星尘发布了新的文献求助10
1分钟前
天天天才完成签到,获得积分10
1分钟前
bkagyin应助尊敬背包采纳,获得10
1分钟前
1分钟前
善良的白昼关注了科研通微信公众号
1分钟前
量子星尘发布了新的文献求助10
1分钟前
回眸完成签到 ,获得积分10
1分钟前
居居侠发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660936
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743644
捐赠科研通 2931648
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462