Towards Robust Differential Privacy in Adaptive Federated Learning Architectures

差别隐私 计算机科学 信息隐私 计算机安全 数据挖掘
作者
Zhichen Han,Xu Canyang,Zhen Wang,Changyin Sun
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tce.2024.3525084
摘要

The essential issues of data silos and user privacy leakage could be relaxed substantially by the development of the federated learning (FL) architecture. In a collaborative multi-user modeling situation, malicious attackers could still use user gradient information to infer the danger of user privacy. To mitigate the issue of privacy leakage, differential privacy (DP) mechanism is integrated into the federated learning framework to assess privacy loss and introduce noise to the local model parameters of users. In addition, in order to minimize information leakage and provide better noise rejection, Rényi differential privacy (RDP) is introduced as a privacy metric, which improves the balance between model privacy and utility. Owing to the unknown target model and limited communication cost resources, a client-based adaptive learning algorithm is developed in which each local model parameter is adaptively updated during local iterations to accelerate model convergence and avoid model overfitting. The experimental results reveal that the client-based adaptive federation learning model in this paper outperforms the classic model at a fixed communication cost, is more robust to noise resistance and variable hyperparameter settings, and provides more accurate privacy protection during transmission.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
鱼鱼鱼完成签到 ,获得积分10
5秒前
5秒前
00K应助jackten采纳,获得10
8秒前
CSUST科研一哥应助bvuiragybv采纳,获得10
8秒前
CipherSage应助小吴同学采纳,获得10
9秒前
纯真玉兰完成签到 ,获得积分10
9秒前
10秒前
完美世界应助HongJiang采纳,获得10
11秒前
思源应助飘逸书易采纳,获得10
13秒前
13秒前
xxxxx炒菜发布了新的文献求助10
13秒前
13秒前
14秒前
浅尝离白应助科研通管家采纳,获得30
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Rain应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得30
16秒前
朗读卿发布了新的文献求助10
16秒前
大个应助ya采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
fifteen应助科研通管家采纳,获得10
17秒前
Rain应助科研通管家采纳,获得20
17秒前
colin发布了新的文献求助10
19秒前
zhang发布了新的文献求助10
19秒前
andrele发布了新的文献求助200
20秒前
PSCs完成签到,获得积分10
22秒前
www发布了新的文献求助10
22秒前
ZHT应助zzj采纳,获得10
23秒前
欢呼的忘幽完成签到,获得积分10
23秒前
慕青应助谨慎师采纳,获得50
23秒前
刘慧鑫完成签到 ,获得积分20
23秒前
所所应助木wm采纳,获得10
23秒前
隐形曼青应助111采纳,获得10
24秒前
sunshine应助飘逸书易采纳,获得10
25秒前
Ava应助g3618采纳,获得10
25秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346345
求助须知:如何正确求助?哪些是违规求助? 2973142
关于积分的说明 8657815
捐赠科研通 2653539
什么是DOI,文献DOI怎么找? 1453184
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662665