A method of identification and localization of tea buds based on lightweight improved YOLOV5

鉴定(生物学) 生物 计算生物学 植物 生物技术
作者
Y. H. Wang,Jinzhu Lu,Qi Wang,Zongmei Gao
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1488185
摘要

The low degree of intelligence and standardization of tea bud picking, as well as laborious and time-consuming manual harvesting, bring significant challenges to the sustainable development of the high-quality tea industry. There is an urgent need to investigate the critical technologies of intelligent picking robots for tea. The complexity of the model requires high hardware computing resources, which limits the deployment of the tea bud detection model in tea-picking robots. Therefore, in this study, we propose the YOLOV5M-SBSD tea bud lightweight detection model to address the above issues. The Fuding white tea bud image dataset was established by collecting Fuding white tea images; then the lightweight network ShuffleNetV2 was used to replace the YOLOV5 backbone network; the up-sampling algorithm of YOLOV5 was optimized by using CARAFE modular structure, which increases the sensory field of the network while maintaining the lightweight; then BiFPN was used to achieve more efficient multi-scale feature fusion; and the introduction of the parameter-free attention SimAm to enhance the feature extraction ability of the model while not adding extra computation. The improved model was denoted as YOLOV5M-SBSD and compared and analyzed with other mainstream target detection models. Then, the YOLOV5M-SBSD recognition model is experimented on with the tea bud dataset, and the tea buds are recognized using YOLOV5M-SBSD. The experimental results show that the recognition accuracy of tea buds is 88.7%, the recall rate is 86.9%, and the average accuracy is 93.1%, which is 0.5% higher than the original YOLOV5M algorithm's accuracy, the average accuracy is 0.2% higher, the Size is reduced by 82.89%, and the Params, and GFlops are reduced by 83.7% and 85.6%, respectively. The improved algorithm has higher detection accuracy while reducing the amount of computation and parameters. Also, it reduces the dependence on hardware, provides a reference for deploying the tea bud target detection model in the natural environment of the tea garden, and has specific theoretical and practical significance for the identification and localization of the intelligent picking robot of tea buds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕晓啸完成签到 ,获得积分0
刚刚
舒适的冰凡完成签到,获得积分10
刚刚
manying完成签到,获得积分10
3秒前
Hai发布了新的文献求助10
3秒前
gu完成签到 ,获得积分10
4秒前
4秒前
Genger完成签到,获得积分10
4秒前
知识四面八方来完成签到 ,获得积分10
5秒前
科烟生完成签到,获得积分10
6秒前
慕青应助manying采纳,获得10
7秒前
7秒前
yu完成签到 ,获得积分10
8秒前
8秒前
杳鸢应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
一一应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
十二完成签到 ,获得积分10
9秒前
12秒前
调皮翠霜完成签到 ,获得积分10
12秒前
Doctor_Mill发布了新的文献求助50
17秒前
xth完成签到 ,获得积分10
19秒前
科研通AI2S应助正直幻香采纳,获得10
19秒前
单身的金鱼完成签到 ,获得积分10
19秒前
20秒前
Mr-Li-Happy完成签到,获得积分10
21秒前
23秒前
1364135702完成签到 ,获得积分10
23秒前
Dr大壮完成签到,获得积分10
25秒前
欢呼的棒棒糖完成签到,获得积分10
25秒前
魁梧的海秋应助yyy采纳,获得10
26秒前
小王完成签到,获得积分10
27秒前
mgqqlwq发布了新的文献求助10
30秒前
32秒前
辞轲完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258178
求助须知:如何正确求助?哪些是违规求助? 2899953
关于积分的说明 8308396
捐赠科研通 2569183
什么是DOI,文献DOI怎么找? 1395555
科研通“疑难数据库(出版商)”最低求助积分说明 653117
邀请新用户注册赠送积分活动 631027