A method of identification and localization of tea buds based on lightweight improved YOLOV5

鉴定(生物学) 生物 计算生物学 植物 生物技术
作者
Y. H. Wang,Jinzhu Lu,Qi Wang,Zongmei Gao
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1488185
摘要

The low degree of intelligence and standardization of tea bud picking, as well as laborious and time-consuming manual harvesting, bring significant challenges to the sustainable development of the high-quality tea industry. There is an urgent need to investigate the critical technologies of intelligent picking robots for tea. The complexity of the model requires high hardware computing resources, which limits the deployment of the tea bud detection model in tea-picking robots. Therefore, in this study, we propose the YOLOV5M-SBSD tea bud lightweight detection model to address the above issues. The Fuding white tea bud image dataset was established by collecting Fuding white tea images; then the lightweight network ShuffleNetV2 was used to replace the YOLOV5 backbone network; the up-sampling algorithm of YOLOV5 was optimized by using CARAFE modular structure, which increases the sensory field of the network while maintaining the lightweight; then BiFPN was used to achieve more efficient multi-scale feature fusion; and the introduction of the parameter-free attention SimAm to enhance the feature extraction ability of the model while not adding extra computation. The improved model was denoted as YOLOV5M-SBSD and compared and analyzed with other mainstream target detection models. Then, the YOLOV5M-SBSD recognition model is experimented on with the tea bud dataset, and the tea buds are recognized using YOLOV5M-SBSD. The experimental results show that the recognition accuracy of tea buds is 88.7%, the recall rate is 86.9%, and the average accuracy is 93.1%, which is 0.5% higher than the original YOLOV5M algorithm's accuracy, the average accuracy is 0.2% higher, the Size is reduced by 82.89%, and the Params, and GFlops are reduced by 83.7% and 85.6%, respectively. The improved algorithm has higher detection accuracy while reducing the amount of computation and parameters. Also, it reduces the dependence on hardware, provides a reference for deploying the tea bud target detection model in the natural environment of the tea garden, and has specific theoretical and practical significance for the identification and localization of the intelligent picking robot of tea buds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江洋小偷完成签到,获得积分10
刚刚
复杂大象完成签到,获得积分10
1秒前
Gavin完成签到,获得积分10
1秒前
陌上尘开完成签到 ,获得积分10
1秒前
LAYWL发布了新的文献求助10
1秒前
zmmm发布了新的文献求助10
1秒前
共享精神应助yuanjingnan采纳,获得10
1秒前
李kazuya完成签到 ,获得积分10
2秒前
江洋小偷发布了新的文献求助10
2秒前
3秒前
Raymond完成签到,获得积分0
3秒前
3秒前
4秒前
108实验室完成签到,获得积分20
4秒前
4秒前
清爽伯云完成签到,获得积分10
5秒前
Lucas应助无糖零脂采纳,获得10
5秒前
5秒前
图灵桑完成签到,获得积分10
5秒前
啦啦啦德玛西亚完成签到,获得积分10
6秒前
CodeCraft应助Ava采纳,获得10
6秒前
爱笑的之槐完成签到 ,获得积分10
7秒前
ESTHERDY完成签到 ,获得积分10
7秒前
yyyyyge发布了新的文献求助20
7秒前
不想干活应助美好斓采纳,获得10
7秒前
未晚完成签到,获得积分10
8秒前
邱梓铭完成签到,获得积分10
8秒前
9秒前
DD完成签到,获得积分10
9秒前
zmmm完成签到,获得积分10
10秒前
10秒前
陌上尘开发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
星辰大海应助warburg采纳,获得10
11秒前
LAYWL完成签到,获得积分10
11秒前
九月初五完成签到,获得积分10
12秒前
爆米花应助Anatee采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743