A method of identification and localization of tea buds based on lightweight improved YOLOV5

鉴定(生物学) 生物 计算生物学 植物 生物技术
作者
Y. H. Wang,Jinzhu Lu,Qi Wang,Zongmei Gao
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1488185
摘要

The low degree of intelligence and standardization of tea bud picking, as well as laborious and time-consuming manual harvesting, bring significant challenges to the sustainable development of the high-quality tea industry. There is an urgent need to investigate the critical technologies of intelligent picking robots for tea. The complexity of the model requires high hardware computing resources, which limits the deployment of the tea bud detection model in tea-picking robots. Therefore, in this study, we propose the YOLOV5M-SBSD tea bud lightweight detection model to address the above issues. The Fuding white tea bud image dataset was established by collecting Fuding white tea images; then the lightweight network ShuffleNetV2 was used to replace the YOLOV5 backbone network; the up-sampling algorithm of YOLOV5 was optimized by using CARAFE modular structure, which increases the sensory field of the network while maintaining the lightweight; then BiFPN was used to achieve more efficient multi-scale feature fusion; and the introduction of the parameter-free attention SimAm to enhance the feature extraction ability of the model while not adding extra computation. The improved model was denoted as YOLOV5M-SBSD and compared and analyzed with other mainstream target detection models. Then, the YOLOV5M-SBSD recognition model is experimented on with the tea bud dataset, and the tea buds are recognized using YOLOV5M-SBSD. The experimental results show that the recognition accuracy of tea buds is 88.7%, the recall rate is 86.9%, and the average accuracy is 93.1%, which is 0.5% higher than the original YOLOV5M algorithm's accuracy, the average accuracy is 0.2% higher, the Size is reduced by 82.89%, and the Params, and GFlops are reduced by 83.7% and 85.6%, respectively. The improved algorithm has higher detection accuracy while reducing the amount of computation and parameters. Also, it reduces the dependence on hardware, provides a reference for deploying the tea bud target detection model in the natural environment of the tea garden, and has specific theoretical and practical significance for the identification and localization of the intelligent picking robot of tea buds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助sda采纳,获得10
1秒前
JamesPei应助苯基乙胺采纳,获得10
1秒前
goodsheep完成签到 ,获得积分10
1秒前
2秒前
王王牛奶发布了新的文献求助10
2秒前
Orange应助ZZZ采纳,获得10
2秒前
2秒前
林临林应助醉熏的天薇采纳,获得10
3秒前
ding应助艾宁采纳,获得20
4秒前
小鹿发布了新的文献求助10
5秒前
田様应助laxy采纳,获得10
5秒前
6秒前
眼睛大紊发布了新的文献求助10
7秒前
王王牛奶完成签到,获得积分10
7秒前
8秒前
vicky完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
眼睛大紊完成签到,获得积分10
13秒前
英俊的铭应助绿大暗采纳,获得10
13秒前
大虫发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
Dina发布了新的文献求助10
15秒前
夏艳青完成签到,获得积分10
15秒前
15秒前
sda发布了新的文献求助10
17秒前
lxy发布了新的文献求助10
17秒前
小马完成签到,获得积分10
18秒前
18秒前
18秒前
酷波er应助甜美的白卉采纳,获得10
19秒前
火山发布了新的文献求助10
19秒前
sda完成签到,获得积分10
20秒前
20秒前
优美元瑶完成签到,获得积分10
21秒前
啦啦啦完成签到 ,获得积分10
21秒前
22秒前
小鲤鱼完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821