Advancements and Limitations: A Systematic Review of Remote-Based Deep Learning Predictive Algorithms for Depression

萧条(经济学) 人工智能 机器学习 计算机科学 算法 心理学 经济 宏观经济学
作者
Fintan Haley,Jacob A Andrews,Nima Moghaddam
出处
期刊:Journal of technology in behavioral science [Springer Nature]
标识
DOI:10.1007/s41347-024-00457-z
摘要

Abstract This systematic literature review explores the emerging field of remote-based deep learning predictive algorithms for depression, focusing on addressing the limitations of traditional diagnostic methods and examining the current state of research in this novel area. A systematic search was conducted in Embase, Medline, Web of Science Core Collection, CINAHL, and PsycINFO in June 2023. To capture relevant studies, titles and abstracts of the papers were reviewed against predefined inclusion and exclusion criteria using four groups of keywords addressing prediction, depression, validity, and deep learning. Eligible studies were systematically reviewed based on the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist. The risk of bias was assessed using the Prediction Model Risk of Bias Assessment (PROBAST) Tool for methodological quality. The synthesis of data was conducted using the Synthesis Without Meta-Analysis (SWiM) framework. From 286 studies initially identified, 6 studies met all inclusion criteria, published between 2020 and 2023. Performance metrics revealed the potential of deep learning models, with accuracy rates reaching as high as 98.23%. Convolutional neural networks (CNNs) emerged as the predominant model, with applicability across diverse data sources such as speech recordings, body motion data, and facial images. However, issues related to risk of bias were prevalent, with most studies lacking essential reporting details and employing relatively small sample sizes. The review identified limitations in the practical application of these models, including limited demographic representation, absence of external validation, and a notable absence of models capable of anticipating the onset of depression. While the current models focus primarily on identifying existing depression of any duration, there is a need for advancements that enable the anticipation of future depressive episodes. To advance this field, we recommend standardized reporting practices, larger and more diverse datasets, external validation, and the development of predictive models that anticipate depression occurrences in advance. These enhancements will contribute to the credibility and real-world relevance of these models. While remote-based deep learning predictive algorithms hold promise in revolutionizing depression prediction, they require refinement and validation to fulfil their potential in clinical practice. This review underscores the need for further research and development in this area to address the identified limitations and contribute to improved mental health assessment and intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧诗双发布了新的文献求助10
1秒前
jerry完成签到,获得积分10
2秒前
Librafans完成签到,获得积分10
2秒前
3秒前
SYLH应助tutoutou采纳,获得10
3秒前
4秒前
Owen应助tian采纳,获得20
5秒前
heavenhorse应助虚心盼夏采纳,获得20
5秒前
cc20231022完成签到,获得积分10
6秒前
7秒前
搜集达人应助小乔同学采纳,获得10
8秒前
Xuezi给直率萌的求助进行了留言
8秒前
晾猫人发布了新的文献求助10
8秒前
9秒前
11秒前
13秒前
华华完成签到,获得积分10
14秒前
在水一方发布了新的文献求助10
16秒前
小马甲应助小浪浪采纳,获得10
16秒前
难过代双完成签到,获得积分10
17秒前
echoabc完成签到,获得积分20
18秒前
CR完成签到 ,获得积分10
19秒前
21秒前
21秒前
小天发布了新的文献求助30
22秒前
刘敏小七发布了新的文献求助10
23秒前
24秒前
24秒前
思源应助猴子没有壳采纳,获得10
25秒前
26秒前
乔心发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
小浪浪发布了新的文献求助10
28秒前
搜集达人应助乔心采纳,获得10
29秒前
mimi完成签到,获得积分20
30秒前
在水一方完成签到,获得积分10
30秒前
31秒前
zqg驳回了tuanheqi应助
31秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422301
求助须知:如何正确求助?哪些是违规求助? 3022634
关于积分的说明 8901789
捐赠科研通 2710031
什么是DOI,文献DOI怎么找? 1486283
科研通“疑难数据库(出版商)”最低求助积分说明 686983
邀请新用户注册赠送积分活动 682206