BSAFusion: A Bidirectional Stepwise Feature Alignment Network for Unaligned Medical Image Fusion

特征(语言学) 计算机科学 融合 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 哲学 语言学
作者
Huafeng Li,Dongming Su,Qing Cai,Yafei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.08050
摘要

If unaligned multimodal medical images can be simultaneously aligned and fused using a single-stage approach within a unified processing framework, it will not only achieve mutual promotion of dual tasks but also help reduce the complexity of the model. However, the design of this model faces the challenge of incompatible requirements for feature fusion and alignment; specifically, feature alignment requires consistency among corresponding features, whereas feature fusion requires the features to be complementary to each other. To address this challenge, this paper proposes an unaligned medical image fusion method called Bidirectional Stepwise Feature Alignment and Fusion (BSFA-F) strategy. To reduce the negative impact of modality differences on cross-modal feature matching, we incorporate the Modal Discrepancy-Free Feature Representation (MDF-FR) method into BSFA-F. MDF-FR utilizes a Modality Feature Representation Head (MFRH) to integrate the global information of the input image. By injecting the information contained in MFRH of the current image into other modality images, it effectively reduces the impact of modality differences on feature alignment while preserving the complementary information carried by different images. In terms of feature alignment, BSFA-F employs a bidirectional stepwise alignment deformation field prediction strategy based on the path independence of vector displacement between two points. This strategy solves the problem of large spans and inaccurate deformation field prediction in single-step alignment. Finally, Multi-Modal Feature Fusion block achieves the fusion of aligned features. The experimental results across multiple datasets demonstrate the effectiveness of our method. The source code is available at https://github.com/slrl123/BSAFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小崽完成签到,获得积分10
1秒前
1秒前
2秒前
猫蒲发布了新的文献求助10
3秒前
3秒前
科西西发布了新的文献求助10
3秒前
隐形曼青应助走走道疯了采纳,获得10
4秒前
4秒前
6秒前
krk完成签到,获得积分20
6秒前
体贴绮露发布了新的文献求助10
7秒前
DBWJ发布了新的文献求助10
7秒前
water应助qweasdzxcqwe采纳,获得10
7秒前
随风飘荡121完成签到,获得积分10
7秒前
sparks发布了新的文献求助10
8秒前
杨123发布了新的文献求助10
9秒前
9秒前
9秒前
文静的海完成签到,获得积分10
10秒前
10秒前
10秒前
共享精神应助Lenacici采纳,获得10
11秒前
哈哈哈哈哈完成签到 ,获得积分20
12秒前
SYLH应助NINISO采纳,获得30
12秒前
12秒前
14秒前
15秒前
15秒前
15秒前
wq完成签到,获得积分10
15秒前
张潇潇发布了新的文献求助10
16秒前
李健应助苏小寰采纳,获得10
17秒前
华仔应助科西西采纳,获得10
17秒前
18秒前
sparks完成签到,获得积分10
22秒前
情怀应助lunlun采纳,获得30
22秒前
科目三应助Hexagram采纳,获得10
22秒前
喵咕嘟发布了新的文献求助10
22秒前
焦立超发布了新的文献求助10
24秒前
111完成签到,获得积分20
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202