BSAFusion: A Bidirectional Stepwise Feature Alignment Network for Unaligned Medical Image Fusion

特征(语言学) 计算机科学 融合 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 哲学 语言学
作者
Huafeng Li,Dongming Su,Qing Cai,Yafei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.08050
摘要

If unaligned multimodal medical images can be simultaneously aligned and fused using a single-stage approach within a unified processing framework, it will not only achieve mutual promotion of dual tasks but also help reduce the complexity of the model. However, the design of this model faces the challenge of incompatible requirements for feature fusion and alignment; specifically, feature alignment requires consistency among corresponding features, whereas feature fusion requires the features to be complementary to each other. To address this challenge, this paper proposes an unaligned medical image fusion method called Bidirectional Stepwise Feature Alignment and Fusion (BSFA-F) strategy. To reduce the negative impact of modality differences on cross-modal feature matching, we incorporate the Modal Discrepancy-Free Feature Representation (MDF-FR) method into BSFA-F. MDF-FR utilizes a Modality Feature Representation Head (MFRH) to integrate the global information of the input image. By injecting the information contained in MFRH of the current image into other modality images, it effectively reduces the impact of modality differences on feature alignment while preserving the complementary information carried by different images. In terms of feature alignment, BSFA-F employs a bidirectional stepwise alignment deformation field prediction strategy based on the path independence of vector displacement between two points. This strategy solves the problem of large spans and inaccurate deformation field prediction in single-step alignment. Finally, Multi-Modal Feature Fusion block achieves the fusion of aligned features. The experimental results across multiple datasets demonstrate the effectiveness of our method. The source code is available at https://github.com/slrl123/BSAFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助聪明无敌小腚宝采纳,获得10
刚刚
李爱国应助明天更好采纳,获得10
1秒前
1秒前
李健应助无情的白桃采纳,获得10
2秒前
wys完成签到,获得积分10
2秒前
无限的隶发布了新的文献求助10
3秒前
邢夏之发布了新的文献求助10
3秒前
随便完成签到,获得积分10
3秒前
完美的晓刚完成签到,获得积分10
3秒前
gww发布了新的文献求助10
3秒前
kls完成签到,获得积分10
4秒前
4秒前
你的男孩DD完成签到 ,获得积分10
4秒前
北冥鱼完成签到,获得积分10
4秒前
烟花应助爆米花采纳,获得10
5秒前
5秒前
Zhang发布了新的文献求助10
5秒前
诚心断天完成签到,获得积分10
6秒前
曹文迪完成签到,获得积分10
6秒前
椰子熟了耶完成签到,获得积分10
6秒前
斯文败类应助Evelyn采纳,获得10
6秒前
6秒前
小雨完成签到,获得积分10
6秒前
xiaobao发布了新的文献求助10
6秒前
7秒前
bk2020113458完成签到,获得积分10
7秒前
Akim应助morlison采纳,获得10
7秒前
习习应助田子璘采纳,获得10
8秒前
8秒前
慕青应助认真的一刀采纳,获得10
8秒前
玉米完成签到,获得积分10
8秒前
思源应助xiuxiu_27采纳,获得10
8秒前
8秒前
CodeCraft应助小王采纳,获得10
9秒前
9秒前
张豪杰发布了新的文献求助10
9秒前
开心初雪完成签到,获得积分10
10秒前
冷静的之卉完成签到,获得积分10
10秒前
10秒前
顾矜应助外向从灵采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759