BSAFusion: A Bidirectional Stepwise Feature Alignment Network for Unaligned Medical Image Fusion

特征(语言学) 计算机科学 融合 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 哲学 语言学
作者
Huafeng Li,Dongming Su,Qing Cai,Yafei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.08050
摘要

If unaligned multimodal medical images can be simultaneously aligned and fused using a single-stage approach within a unified processing framework, it will not only achieve mutual promotion of dual tasks but also help reduce the complexity of the model. However, the design of this model faces the challenge of incompatible requirements for feature fusion and alignment; specifically, feature alignment requires consistency among corresponding features, whereas feature fusion requires the features to be complementary to each other. To address this challenge, this paper proposes an unaligned medical image fusion method called Bidirectional Stepwise Feature Alignment and Fusion (BSFA-F) strategy. To reduce the negative impact of modality differences on cross-modal feature matching, we incorporate the Modal Discrepancy-Free Feature Representation (MDF-FR) method into BSFA-F. MDF-FR utilizes a Modality Feature Representation Head (MFRH) to integrate the global information of the input image. By injecting the information contained in MFRH of the current image into other modality images, it effectively reduces the impact of modality differences on feature alignment while preserving the complementary information carried by different images. In terms of feature alignment, BSFA-F employs a bidirectional stepwise alignment deformation field prediction strategy based on the path independence of vector displacement between two points. This strategy solves the problem of large spans and inaccurate deformation field prediction in single-step alignment. Finally, Multi-Modal Feature Fusion block achieves the fusion of aligned features. The experimental results across multiple datasets demonstrate the effectiveness of our method. The source code is available at https://github.com/slrl123/BSAFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛彬完成签到,获得积分20
1秒前
4秒前
fuxiao完成签到 ,获得积分10
6秒前
7秒前
ShellyMaya完成签到 ,获得积分10
7秒前
四月完成签到,获得积分10
10秒前
哦呵呵哈哈啦啦完成签到 ,获得积分10
11秒前
科研通AI2S应助MQ采纳,获得10
11秒前
狂野筝发布了新的文献求助10
12秒前
16秒前
18秒前
饼饼完成签到,获得积分10
18秒前
BBK发布了新的文献求助10
22秒前
狂野筝完成签到,获得积分10
27秒前
30秒前
领导范儿应助jiangqingquan采纳,获得10
34秒前
34秒前
orixero应助科研通管家采纳,获得10
36秒前
寒来暑往应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
Owen应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
Jvbe1发布了新的文献求助30
37秒前
38秒前
ccm应助dylan采纳,获得10
39秒前
40秒前
上官若男应助二次元喵酱采纳,获得10
42秒前
43秒前
45秒前
46秒前
47秒前
二次元喵酱完成签到,获得积分10
50秒前
追寻若云发布了新的文献求助10
50秒前
wankai发布了新的文献求助10
50秒前
高高千筹发布了新的文献求助10
51秒前
550完成签到,获得积分10
51秒前
JamesPei应助dreek采纳,获得10
52秒前
54秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8633997
捐赠科研通 2648031
什么是DOI,文献DOI怎么找? 1449967
科研通“疑难数据库(出版商)”最低求助积分说明 671609
邀请新用户注册赠送积分活动 660663