底物特异性
生物化学
NADH脱氢酶
线粒体
生物
基质(水族馆)
化学
立体化学
酶
线粒体DNA
基因
生态学
作者
Hannes Juergens,Álvaro Mielgo‐Gómez,Albert Godoy-Hernández,Jolanda ter Horst,Janine M. Nijenhuis,Duncan G. G. McMillan,Robert Mans
标识
DOI:10.3389/fmicb.2024.1473869
摘要
Mitochondria from Ogataea parapolymorpha harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed. Our findings reveal that the O. parapolymorpha respiratory chain contains an internal NADH-accepting NDH-2 (Ndh2-1/OpNdi1), at least one external NAD(P)H-accepting enzyme, and likely additional mechanisms for respiration-linked oxidation of cytosolic NADH. Metabolic regulation appears to prevent competition between OpNdi1 and Complex I for mitochondrial NADH. With the exception of OpNdi1, the respiratory chain of O. parapolymorpha exhibits metabolic redundancy and tolerates deletion of multiple NADH-dehydrogenase genes without compromising fully respiratory metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI