Regulating the Isomerization Geometry and Energy State of Covalent Organic Frameworks for Enhanced Oxygen Reduction Activity

异构化 材料科学 催化作用 堆积 共价键 拉曼光谱 偶极子 化学物理 纳米技术 化学 有机化学 物理 光学
作者
Hongni Chen,Daohao Li,Min Lin,Qian Wang,Yihui Zou,Jiaqi Ran,Yali Xing,Xiaojing Long
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202500063
摘要

Abstract Embedding isomer entities onto crystalline frameworks with precisely defined spatial distributions represents a promising approach to enhancing the efficiency of oxygen reduction reaction (ORR) in fuel cells. However, accurately constructing covalent organic frameworks (COFs) to regulate energy state effectively remains a significant challenge. Herein, an innovative geometric isomerization strategy aimed at minimizing the rotational barrier energy (ΔE), average local ionization energy (ALIE), and Gibbs free energy (ΔG) for ORR within COFs is proposed. Based on this strategy, isomeric Py‐COF‐αα with 2,2‐substitution, Py‐COF‐ββ with 3,3‐substitution, and Py‐COF‐αβ with 2,3‐substitution on the mainchain frameworks have been obtained. The electronic states and intermediate adsorption capabilities are finely tuned through isomer modification, yielding a precisely controllable chemical activity. Notably, Py‐COF‐αβ with lower ΔE between thiophenes achieves remarkable performance, evidenced by a half‐wave potential of 0.77 V vs reversible hydrogen electrode (RHE), surpassing most reported metal‐free electrocatalysts. Combined with theoretical prediction and in situ Raman spectra, it is revealed that the increased dipole moment and non‐uniform charge distribution caused by isomer endows pentacyclic‐carbon (thiophene β‐position) far from sulfur atoms with efficient catalytic activity. This work has opened up a novel paradigm for the isomerization of COFs and underscores the pivotal role of charge regulation in facilitating efficient catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的妖妖给无心的妖妖的求助进行了留言
3秒前
Naonaoo完成签到,获得积分10
5秒前
5秒前
小花完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
11秒前
我是老大应助么么哒大王采纳,获得10
12秒前
12秒前
桐桐应助Begonia采纳,获得10
12秒前
科研通AI5应助mochou采纳,获得10
14秒前
小杜发布了新的文献求助30
14秒前
15秒前
上官若男应助hongxing liu采纳,获得10
15秒前
15秒前
15秒前
16秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
16秒前
17秒前
17秒前
科研通AI2S应助负责的觅海采纳,获得10
18秒前
charcw发布了新的文献求助10
18秒前
酷波er应助冷静孤容采纳,获得10
18秒前
CYAA发布了新的文献求助10
18秒前
万能图书馆应助张张采纳,获得10
20秒前
VDC应助徐biao采纳,获得40
21秒前
LHL发布了新的文献求助10
21秒前
sasha发布了新的文献求助10
23秒前
charcw完成签到,获得积分10
24秒前
华仔应助酒仙采纳,获得10
24秒前
丘比特应助睡到自然醒采纳,获得10
25秒前
27秒前
27秒前
我是老大应助organicboy采纳,获得10
28秒前
星辰大海应助WZQ采纳,获得10
29秒前
29秒前
有我ID随机吗完成签到,获得积分10
30秒前
tyy完成签到,获得积分10
31秒前
XZZH完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978