Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection

人工智能 计算机科学 RGB颜色模型 模式识别(心理学) 小波 特征(语言学) 计算机视觉 小波变换 图像融合 目标检测 分割 背景(考古学) 频道(广播) 特征选择 图像(数学) 电信 古生物学 哲学 生物 语言学
作者
Jianxun Zhao,Xin Wen,Yu He,Xiaowei Yang,Kechen Song
出处
期刊:Sensors [MDPI AG]
卷期号:24 (24): 8159-8159
标识
DOI:10.3390/s24248159
摘要

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance. To address this issue, we propose a method for RGB-T salient object detection that enhances performance through wavelet transform and channel-wise attention fusion. Through feature differentiation, we effectively extract spatial characteristics of the target, enhancing the detection capability for global context and fine-grained details. First, input features are passed through the channel-wise criss-cross module (CCM) for cross-modal information fusion, adaptively adjusting the importance of features to generate rich fusion information. Subsequently, the multi-scale fusion information is input into the feature selection wavelet transforme module (FSW), which selects beneficial low-frequency and high-frequency features to improve feature aggregation performance and achieves higher segmentation accuracy through long-distance connections. Extensive experiments demonstrate that our method outperforms 22 state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
好好应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
好好应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
dew应助科研通管家采纳,获得50
刚刚
FU发布了新的文献求助10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
好好应助科研通管家采纳,获得10
1秒前
xu应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
2秒前
路人发布了新的文献求助10
3秒前
3秒前
隐形曼青应助猪猪hero采纳,获得10
3秒前
5秒前
迷路的寒云完成签到,获得积分20
5秒前
6秒前
搜集达人应助路人采纳,获得10
9秒前
10秒前
10秒前
10秒前
CipherSage应助灵巧帽子采纳,获得20
11秒前
轻松凌柏完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716