Ab initio characterization of protein molecular dynamics with AI2BMD

表征(材料科学) 从头算 计算生物学 分子动力学 化学 计算化学 生物 材料科学 纳米技术 有机化学
作者
Tong Wang,Xinheng He,Mingyu Li,Yatao Li,Ran Bi,Yusong Wang,Chaoran Cheng,Xiangzhen Shen,Jiawei Meng,He Zhang,Haiguang Liu,Zun Wang,Shaoning Li,Bin Shao,Tie‐Yan Liu
出处
期刊:Nature [Nature Portfolio]
标识
DOI:10.1038/s41586-024-08127-z
摘要

Biomolecular dynamics simulation is a fundamental technology for life sciences research, and its usefulness depends on its accuracy and efficiency1–3. Classical molecular dynamics simulation is fast but lacks chemical accuracy4,5. Quantum chemistry methods such as density functional theory can reach chemical accuracy but cannot scale to support large biomolecules6. Here we introduce an artificial intelligence-based ab initio biomolecular dynamics system (AI2BMD) that can efficiently simulate full-atom large biomolecules with ab initio accuracy. AI2BMD uses a protein fragmentation scheme and a machine learning force field7 to achieve generalizable ab initio accuracy for energy and force calculations for various proteins comprising more than 10,000 atoms. Compared to density functional theory, it reduces the computational time by several orders of magnitude. With several hundred nanoseconds of dynamics simulations, AI2BMD demonstrated its ability to efficiently explore the conformational space of peptides and proteins, deriving accurate 3J couplings that match nuclear magnetic resonance experiments, and showing protein folding and unfolding processes. Furthermore, AI2BMD enables precise free-energy calculations for protein folding, and the estimated thermodynamic properties are well aligned with experiments. AI2BMD could potentially complement wet-lab experiments, detect the dynamic processes of bioactivities and enable biomedical research that is impossible to conduct at present. A study introduces AI2BMD, an artificial intelligence-based dynamics simulation program that uses protein fragmentation with a machine learning force field to accurately and efficiently model the folding and unfolding of large proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勤恳冰淇淋完成签到 ,获得积分10
1秒前
甫_F发布了新的文献求助10
1秒前
sophiemore发布了新的文献求助10
3秒前
4秒前
尘南浔完成签到 ,获得积分10
5秒前
酷酷的冰真应助西一阿铭采纳,获得20
5秒前
7秒前
念姬发布了新的文献求助10
8秒前
LeiZha完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助博修采纳,获得10
8秒前
一只呆果蝇完成签到,获得积分10
10秒前
刻苦海露发布了新的文献求助10
12秒前
火星上初翠完成签到,获得积分10
12秒前
嘉雯完成签到 ,获得积分10
13秒前
14秒前
14秒前
17秒前
三更笔舞完成签到,获得积分10
17秒前
木林森林木完成签到 ,获得积分10
18秒前
nancy发布了新的文献求助10
18秒前
20秒前
21秒前
yznfly应助sfafasfsdf采纳,获得20
22秒前
22秒前
gene完成签到,获得积分10
22秒前
丁玲玲完成签到 ,获得积分10
24秒前
英俊的铭应助nancy采纳,获得10
25秒前
脑洞疼应助王子采纳,获得10
25秒前
28秒前
刻苦海露完成签到,获得积分10
31秒前
清璃完成签到 ,获得积分10
31秒前
晶晶完成签到,获得积分10
32秒前
33秒前
上官若男应助科研通管家采纳,获得10
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
猪猪hero应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962948
求助须知:如何正确求助?哪些是违规求助? 3508915
关于积分的说明 11143982
捐赠科研通 3241808
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579