Ultrarobust and Precise Luminescence Thermometry Enabled by the Combination of Reassembled Emission Spectra With Denoising Neural Network

发光 人工神经网络 降噪 谱线 材料科学 发射光谱 生物系统 分析化学(期刊) 模式识别(心理学) 人工智能 计算机科学 光电子学 化学 物理 生物 色谱法 天文
作者
Wei Xü,Li Wang,Junqi Cui,Chunhai Hu,Longjiang Zheng,Zhiguo Zhang,Zhen Sun
出处
期刊:Laser & Photonics Reviews [Wiley]
标识
DOI:10.1002/lpor.202401956
摘要

Abstract Nanomaterial‐based luminescence thermometry enables non‐invasive in vivo temperature measurement with high spatial resolution, which is crucial for driving advancement in diagnostic and therapeutic technologies. However, spectral distortions and luminescence signal attenuation resulting from complex light‐tissue interactions pose substantial challenges to the practical application of this method. Here, a new strategy is presented, termed reassembled emission spectra (RaES) thermometry, for ultrarobust thermal sensing in biological environments. RaES integrates the temperature‐sensitive features of sub‐spectra from multiple luminescent centers, creating a thermometric parameter that is exclusively governed by temperature. To enhance accuracy further, deep learning‐based denoising is preliminarily incorporated into luminescence thermometry. A U‐shaped convolutional neural network model with high performance is constructed with data augmentation to recover emission spectra from significant noise with minimal bias. Empowered by the denoising model, the proposed sensing approach achieves excellent results even in challenging experiments, such as temperature measurements under static blood solution interference (Δ T = 0.23 °C) and real‐time thermal monitoring during dynamic blood diffusion (Δ T = 0.37 °C), where the conventional luminescence sensing method proves completely ineffective. Being independent of specific materials and equipment, this thermometry approach offers a versatile solution adaptable to harsh environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助lsq采纳,获得10
1秒前
彭于晏应助Cakeat采纳,获得10
2秒前
2秒前
3秒前
烟花应助Obliviate采纳,获得10
3秒前
3秒前
小徐801发布了新的文献求助50
3秒前
3秒前
贪玩的晓筠完成签到,获得积分10
4秒前
5秒前
任性的卿完成签到,获得积分10
5秒前
shanage应助止戈采纳,获得10
6秒前
6秒前
小七完成签到 ,获得积分10
6秒前
Domanic完成签到,获得积分10
7秒前
完美世界应助光亮的忆山采纳,获得20
7秒前
7秒前
元昭诩应助张子珍采纳,获得10
7秒前
niantang完成签到,获得积分20
8秒前
8秒前
共享精神应助善良的宛凝采纳,获得30
8秒前
苹果衬衫发布了新的文献求助10
9秒前
9秒前
宋宋发布了新的文献求助10
10秒前
10秒前
zz完成签到,获得积分10
10秒前
炙热笑旋发布了新的文献求助10
10秒前
10秒前
科研通AI5应助小皮采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
李健的粉丝团团长应助dou采纳,获得10
11秒前
Wiggins完成签到,获得积分10
11秒前
11秒前
12秒前
ly完成签到,获得积分20
12秒前
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652814
求助须知:如何正确求助?哪些是违规求助? 3216895
关于积分的说明 9714455
捐赠科研通 2924654
什么是DOI,文献DOI怎么找? 1601797
邀请新用户注册赠送积分活动 754601
科研通“疑难数据库(出版商)”最低求助积分说明 733157