Prevalence and factor associated with depressive symptoms in patients with osteoarthritis: A cross-sectional study

横断面研究 抑郁症状 医学 骨关节炎 风险因素 内科学 精神科 焦虑 病理 替代医学
作者
Zehua Wang,Xingjia Mao,Zijian Guo,Hui Huang,Guoyu Che,Tao Li
出处
期刊:Journal of Psychosomatic Research [Elsevier]
卷期号:189: 112018-112018
标识
DOI:10.1016/j.jpsychores.2024.112018
摘要

Osteoarthritis (OA) is a prevalent degenerative joint condition. Among OA patients, depressive symptoms are the most frequent psychiatric disorder, negatively impacting both prognosis and quality of life. This study analyzed the independent factors associated with the development of depressive symptoms in patients with OA and constructed a nomogram to assess the risk of developing depressive symptoms. An analysis was conducted on data from 2093 OA patients in the NHANES database, covering 2007 to 2014. A training set and a validation set were randomly assigned to participants in a 7:3 ratio. Variables significantly associated with depressive symptoms in OA patients were identified using the least absolute shrinkage and selection operator (LASSO) and multivariable logistic regression analyses and nomograms were constructed. Its performance and clinical relevance were assessed using receiver operating characteristic (ROC) curves, C indices, calibration curves, and decision curves. Among the 2093 OA patients, 357 were assessed as having depressive symptoms. There are eight independent relevant factors, which are gender, age, poverty-to-income ratio (PIR), race, educational attainment, smoking status, diabetes, and sleep disorder. The AUC values of the training and validation sets were 0.718 (95 %CI: 0.683-0.752) and 0.733 (95 %CI: 0.678-0.788). Calibration and decision curve analyses showed that this nomogram exhibits high accuracy, good discrimination, and potential clinical benefits on both training and validation sets. We screened to obtain factors associated with depressive symptoms in patients with OA. Dynamic nomograms enable the combination of individual relevant factors for better assessing and managing high-risk OA groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注半烟完成签到 ,获得积分10
1秒前
Dreamer0422完成签到,获得积分10
1秒前
2秒前
2秒前
xinjie完成签到,获得积分20
3秒前
unique完成签到,获得积分10
4秒前
5秒前
妮露的修狗完成签到,获得积分10
6秒前
宁远发布了新的文献求助10
7秒前
7秒前
8秒前
深情安青应助听毛细胞Hey采纳,获得10
8秒前
wxfacai应助大emo采纳,获得50
8秒前
非主流的毛线应助NZH采纳,获得10
9秒前
10秒前
爆米花发布了新的文献求助10
11秒前
李浩然发布了新的文献求助10
12秒前
山河发布了新的文献求助20
13秒前
科研星发布了新的文献求助10
14秒前
17秒前
Yz完成签到 ,获得积分10
19秒前
清脆大树发布了新的文献求助10
19秒前
三更笔舞完成签到 ,获得积分10
19秒前
23秒前
23秒前
cun完成签到,获得积分10
24秒前
坚强黎昕完成签到 ,获得积分10
25秒前
哈哈发布了新的文献求助10
26秒前
经钧完成签到 ,获得积分10
27秒前
TN应助痴情的念蕾采纳,获得10
27秒前
隐形的巴豆完成签到,获得积分10
27秒前
清脆大树完成签到,获得积分10
29秒前
英俊的铭应助桑榆。采纳,获得30
32秒前
带象完成签到,获得积分10
34秒前
35秒前
seeya发布了新的文献求助10
38秒前
二小完成签到 ,获得积分10
39秒前
无语的梦易完成签到,获得积分10
40秒前
wenbinvan完成签到,获得积分0
42秒前
可爱非笑发布了新的文献求助10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233