亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth

T790米 突变体 癌症研究 肺癌 表皮生长因子受体 癌症 计算生物学 生物 细胞生物学 生物信息学 医学 肿瘤科 遗传学 基因 吉非替尼
作者
Rui Zhou,Ziqian Liu,Tongtong Wu,Xianwei Pan,Tongtong Li,Kaiting Miao,Yuru Li,Xiaohui Hu,Haigang Wu,Andrew M. Hemmings,Beier Jiang,Zhenzhen Zhang,Ning Liu
出处
期刊:Cell Communication and Signaling [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12964-024-01954-7
摘要

Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selective EGFR-T790M inhibitors has proven challenging through traditional screening platforms. With great advances in computer algorithms, machine learning improved the screening rates of molecules at full chemical spaces, and these molecules will present higher biological activity and targeting efficiency. An integrated machine learning approach, integrated by Bayesian inference, was employed to screen a commercial dataset of 70,413 molecules, identifying candidates that selectively and efficiently bind with EGFR harboring T790M mutation. In vitro cellular assays and molecular dynamic simulations was used for validation. EGFR knockout cell line was generated for cross-validation. In vivo xenograft moues model was constructed to investigate the antitumor efficacy of CDDO-Me. Our virtual screening and subsequent in vitro testing successfully identified CDDO-Me, an oleanolic acid derivative with anti-inflammatory activity, as a potent inhibitor of NSCLC cancer cells harboring the EGFR-T790M mutation. Cellular thermal shift assay and molecular dynamic simulation validated the selective binding of CDDO-Me to T790M-mutant EGFR. Further experimental results revealed that CDDO-Me induced cellular apoptosis and caused cell cycle arrest through inhibiting the PI3K-Akt-mTOR axis by directly targeting EGFR protein, cross-validated by sgEGFR silencing in H1975 cells. Additionally, CDDO-Me could dose-depended suppress the tumor growth in a H1975 xenograft mouse model. CDDO-Me induced apoptosis and caused cell cycle arrest by inhibiting the PI3K-Akt-mTOR pathway, directly targeting the EGFR protein. In vivo studies in a H1975 xenograft mouse model demonstrated dose-dependent suppression of tumor growth. Our work highlights the application of machine learning-aided drug screening and provides a promising lead compound to conquer the drug resistance of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
3秒前
南风完成签到,获得积分10
3秒前
chuhong完成签到 ,获得积分10
4秒前
剑指东方是为谁完成签到,获得积分10
5秒前
科研通AI5应助daidai采纳,获得10
9秒前
可爱的函函应助Karol采纳,获得10
13秒前
20秒前
NSS完成签到,获得积分10
28秒前
cadnash发布了新的文献求助20
30秒前
脑洞疼应助知之是知之采纳,获得10
31秒前
知之是知之完成签到,获得积分10
43秒前
cadnash完成签到,获得积分10
54秒前
笨笨亦凝完成签到 ,获得积分20
1分钟前
文鞅完成签到 ,获得积分10
1分钟前
海湖蓝天游完成签到,获得积分10
1分钟前
1分钟前
哇咔咔完成签到 ,获得积分10
1分钟前
peiter完成签到 ,获得积分10
1分钟前
毛毛毛发布了新的文献求助10
1分钟前
1分钟前
毛毛毛完成签到,获得积分10
1分钟前
英姑应助Karol采纳,获得10
1分钟前
nfei发布了新的文献求助30
1分钟前
慕青应助狂野东蒽采纳,获得10
1分钟前
科研通AI5应助nfei采纳,获得10
1分钟前
小斌应助ling361采纳,获得10
1分钟前
kk_1315完成签到,获得积分0
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Swear完成签到 ,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
lushier发布了新的文献求助10
2分钟前
猪哥发布了新的文献求助10
2分钟前
610完成签到 ,获得积分10
2分钟前
搜集达人应助Karol采纳,获得10
2分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733350
求助须知:如何正确求助?哪些是违规求助? 3277580
关于积分的说明 10003346
捐赠科研通 2993529
什么是DOI,文献DOI怎么找? 1642742
邀请新用户注册赠送积分活动 780596
科研通“疑难数据库(出版商)”最低求助积分说明 748912