Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach

支持向量机 因子(编程语言) 人工智能 模糊逻辑 计算机科学 机器学习 程序设计语言
作者
M. Tanveer,Anushka Tiwari,Mushir Akhtar,Chin‐Teng Lin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.17128
摘要

In real-world applications, class-imbalanced datasets pose significant challenges for machine learning algorithms, such as support vector machines (SVMs), particularly in effectively managing imbalance, noise, and outliers. Fuzzy support vector machines (FSVMs) address class imbalance by assigning varying fuzzy memberships to samples; however, their sensitivity to imbalanced datasets can lead to inaccurate assessments. The recently developed slack-factor-based FSVM (SFFSVM) improves traditional FSVMs by using slack factors to adjust fuzzy memberships based on misclassification likelihood, thereby rectifying misclassifications induced by the hyperplane obtained via different error cost (DEC). Building on SFFSVM, we propose an improved slack-factor-based FSVM (ISFFSVM) that introduces a novel location parameter. This novel parameter significantly advances the model by constraining the DEC hyperplane's extension, thereby mitigating the risk of misclassifying minority class samples. It ensures that majority class samples with slack factor scores approaching the location threshold are assigned lower fuzzy memberships, which enhances the model's discrimination capability. Extensive experimentation on a diverse array of real-world KEEL datasets demonstrates that the proposed ISFFSVM consistently achieves higher F1-scores, Matthews correlation coefficients (MCC), and area under the precision-recall curve (AUC-PR) compared to baseline classifiers. Consequently, the introduction of the location parameter, coupled with the slack-factor-based fuzzy membership, enables ISFFSVM to outperform traditional approaches, particularly in scenarios characterized by severe class disparity. The code for the proposed model is available at \url{https://github.com/mtanveer1/ISFFSVM}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行毅文完成签到,获得积分10
刚刚
普鲁卡因完成签到,获得积分10
刚刚
zycdx3906完成签到,获得积分10
刚刚
flymove完成签到,获得积分10
刚刚
ED应助SC武采纳,获得10
1秒前
Sunnyside完成签到 ,获得积分10
1秒前
yao完成签到,获得积分10
1秒前
cx完成签到,获得积分10
2秒前
2秒前
马上动起来完成签到,获得积分10
4秒前
SYLH应助tttx采纳,获得10
4秒前
安静的乐松完成签到,获得积分10
4秒前
mike_007发布了新的文献求助10
6秒前
7秒前
DijiaXu完成签到,获得积分10
7秒前
乖猫要努力完成签到,获得积分0
7秒前
小可爱完成签到,获得积分10
9秒前
黄黄完成签到,获得积分10
9秒前
cavi完成签到,获得积分10
9秒前
彪行天下完成签到,获得积分10
10秒前
lzl008完成签到 ,获得积分10
10秒前
mr完成签到 ,获得积分10
11秒前
海比天蓝关注了科研通微信公众号
11秒前
anan完成签到 ,获得积分10
11秒前
丁心莲关注了科研通微信公众号
11秒前
APS完成签到,获得积分10
11秒前
wkyt发布了新的文献求助10
12秒前
大胆的忆寒完成签到,获得积分10
13秒前
14秒前
tttx完成签到,获得积分10
14秒前
乐观若烟完成签到 ,获得积分10
15秒前
何必呢完成签到,获得积分10
15秒前
SC武完成签到,获得积分10
15秒前
清爽冬莲完成签到 ,获得积分10
18秒前
肖飞鱼完成签到,获得积分10
18秒前
文章快快来完成签到,获得积分10
19秒前
蛋炒饭加洋葱应助dd采纳,获得10
19秒前
萌萌完成签到,获得积分10
19秒前
啊鲤完成签到,获得积分10
19秒前
AJ完成签到 ,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027