已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach

支持向量机 因子(编程语言) 人工智能 模糊逻辑 计算机科学 机器学习 程序设计语言
作者
M. Tanveer,Anushka Tiwari,Mushir Akhtar,Chin‐Teng Lin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.17128
摘要

In real-world applications, class-imbalanced datasets pose significant challenges for machine learning algorithms, such as support vector machines (SVMs), particularly in effectively managing imbalance, noise, and outliers. Fuzzy support vector machines (FSVMs) address class imbalance by assigning varying fuzzy memberships to samples; however, their sensitivity to imbalanced datasets can lead to inaccurate assessments. The recently developed slack-factor-based FSVM (SFFSVM) improves traditional FSVMs by using slack factors to adjust fuzzy memberships based on misclassification likelihood, thereby rectifying misclassifications induced by the hyperplane obtained via different error cost (DEC). Building on SFFSVM, we propose an improved slack-factor-based FSVM (ISFFSVM) that introduces a novel location parameter. This novel parameter significantly advances the model by constraining the DEC hyperplane's extension, thereby mitigating the risk of misclassifying minority class samples. It ensures that majority class samples with slack factor scores approaching the location threshold are assigned lower fuzzy memberships, which enhances the model's discrimination capability. Extensive experimentation on a diverse array of real-world KEEL datasets demonstrates that the proposed ISFFSVM consistently achieves higher F1-scores, Matthews correlation coefficients (MCC), and area under the precision-recall curve (AUC-PR) compared to baseline classifiers. Consequently, the introduction of the location parameter, coupled with the slack-factor-based fuzzy membership, enables ISFFSVM to outperform traditional approaches, particularly in scenarios characterized by severe class disparity. The code for the proposed model is available at \url{https://github.com/mtanveer1/ISFFSVM}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Simpson完成签到 ,获得积分10
5秒前
尧尧完成签到,获得积分10
7秒前
1no完成签到 ,获得积分10
9秒前
捏个小雪团完成签到 ,获得积分10
10秒前
10秒前
Lqian_Yu发布了新的文献求助10
11秒前
11秒前
沁沁沁完成签到 ,获得积分10
12秒前
13秒前
吖123发布了新的文献求助10
16秒前
肉丸完成签到 ,获得积分10
16秒前
翻译度发布了新的文献求助10
17秒前
bobo发布了新的文献求助10
17秒前
橘橘橘子皮完成签到 ,获得积分10
17秒前
果汁完成签到 ,获得积分10
18秒前
研友_Z6Qrbn完成签到,获得积分10
18秒前
烂漫的蜡烛完成签到 ,获得积分10
23秒前
24秒前
安详初蓝完成签到 ,获得积分10
26秒前
大个应助吖123采纳,获得10
26秒前
28秒前
852应助乐观的醉薇采纳,获得10
28秒前
liujingyi发布了新的文献求助10
29秒前
乔苏惠娜发布了新的文献求助10
33秒前
36秒前
36038138完成签到 ,获得积分10
37秒前
满意的迎南完成签到 ,获得积分10
38秒前
小熊饼干完成签到,获得积分10
38秒前
38秒前
大方的笑萍完成签到 ,获得积分10
39秒前
Hello应助CKX采纳,获得10
39秒前
41秒前
illion1发布了新的文献求助10
42秒前
与共完成签到 ,获得积分10
44秒前
xuan发布了新的文献求助10
44秒前
CKX完成签到,获得积分10
45秒前
诺诺完成签到 ,获得积分10
45秒前
liujingyi完成签到,获得积分20
45秒前
幸福老六完成签到,获得积分10
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307193
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499766
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428732
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382