Social learning with complex contagion

模仿 进化博弈论 复制因子方程 双稳态 人口 随机博弈 情绪传染 协调博弈 博弈论 数理经济学 计算机科学 统计物理学 数学 心理学 社会心理学 物理 量子力学 社会学 人口学
作者
Hiroaki Chiba-Okabe,Joshua B. Plotkin
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (49) 被引量:1
标识
DOI:10.1073/pnas.2414291121
摘要

Traditional models of social learning by imitation are based on simple contagion—where an individual may imitate a more successful neighbor following a single interaction. But real-world contagion processes are often complex, meaning that multiple exposures may be required before an individual considers changing their type. We introduce a framework that combines the concepts of simple payoff-biased imitation with complex contagion, to describe how social behaviors spread through a population. We formulate this model as a discrete time and state stochastic process in a finite population, and we derive its continuum limit as an ordinary differential equation that generalizes the replicator equation, a widely used dynamical model in evolutionary game theory. When applied to linear frequency-dependent games, social learning with complex contagion produces qualitatively different outcomes than traditional imitation dynamics: it can shift the Prisoner’s Dilemma from a unique all-defector equilibrium to either a stable mixture of cooperators and defectors in the population, or a bistable system; it changes the Snowdrift game from a single to a bistable equilibrium; and it can alter the Coordination game from bistability at the boundaries to two internal equilibria. The long-term outcome depends on the balance between the complexity of the contagion process and the strength of selection that biases imitation toward more successful types. Our analysis intercalates the fields of evolutionary game theory with complex contagions, and it provides a synthetic framework to describe more realistic forms of behavioral change in social systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abcd发布了新的文献求助10
刚刚
111完成签到,获得积分10
刚刚
沐曦完成签到 ,获得积分10
1秒前
17876581310完成签到 ,获得积分10
2秒前
Sawyer发布了新的文献求助10
2秒前
科研通AI2S应助xh采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
共享精神应助阔达的石头采纳,获得10
3秒前
kong发布了新的文献求助10
4秒前
liujiaqi完成签到,获得积分10
4秒前
4秒前
清脆安南发布了新的文献求助10
5秒前
CipherSage应助刘英岑采纳,获得10
6秒前
7秒前
南风知我意完成签到,获得积分10
8秒前
9秒前
霍笑寒完成签到,获得积分10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
慕青应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
顾矜应助DKC采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
9秒前
kdjm688发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
熬夜波比应助科研通管家采纳,获得10
10秒前
10秒前
一一应助科研通管家采纳,获得10
10秒前
小幸运完成签到,获得积分10
10秒前
吕凯迪应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
一棵树发布了新的文献求助10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
shen发布了新的文献求助10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684548
求助须知:如何正确求助?哪些是违规求助? 5037168
关于积分的说明 15184425
捐赠科研通 4843794
什么是DOI,文献DOI怎么找? 2596923
邀请新用户注册赠送积分活动 1549534
关于科研通互助平台的介绍 1508029