Social learning with complex contagion

模仿 进化博弈论 复制因子方程 双稳态 人口 随机博弈 情绪传染 协调博弈 博弈论 数理经济学 计算机科学 统计物理学 数学 心理学 社会心理学 物理 量子力学 社会学 人口学
作者
Hiroaki Chiba-Okabe,Joshua B. Plotkin
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (49) 被引量:1
标识
DOI:10.1073/pnas.2414291121
摘要

Traditional models of social learning by imitation are based on simple contagion—where an individual may imitate a more successful neighbor following a single interaction. But real-world contagion processes are often complex, meaning that multiple exposures may be required before an individual considers changing their type. We introduce a framework that combines the concepts of simple payoff-biased imitation with complex contagion, to describe how social behaviors spread through a population. We formulate this model as a discrete time and state stochastic process in a finite population, and we derive its continuum limit as an ordinary differential equation that generalizes the replicator equation, a widely used dynamical model in evolutionary game theory. When applied to linear frequency-dependent games, social learning with complex contagion produces qualitatively different outcomes than traditional imitation dynamics: it can shift the Prisoner’s Dilemma from a unique all-defector equilibrium to either a stable mixture of cooperators and defectors in the population, or a bistable system; it changes the Snowdrift game from a single to a bistable equilibrium; and it can alter the Coordination game from bistability at the boundaries to two internal equilibria. The long-term outcome depends on the balance between the complexity of the contagion process and the strength of selection that biases imitation toward more successful types. Our analysis intercalates the fields of evolutionary game theory with complex contagions, and it provides a synthetic framework to describe more realistic forms of behavioral change in social systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助buhuidanhuixue采纳,获得10
刚刚
小欢发布了新的文献求助20
1秒前
所所应助晓晓来了采纳,获得10
1秒前
liushirui发布了新的文献求助10
2秒前
完美世界应助yan采纳,获得80
2秒前
xiancdc完成签到,获得积分10
3秒前
爆米花应助健康的不愁采纳,获得10
3秒前
freya发布了新的文献求助10
3秒前
充电宝应助小白采纳,获得10
3秒前
研友_8WMxKn完成签到,获得积分10
3秒前
4秒前
4秒前
222666发布了新的文献求助10
5秒前
大个应助122采纳,获得10
5秒前
维洛尼亚发布了新的文献求助10
5秒前
yolo完成签到,获得积分10
5秒前
6秒前
初秋完成签到,获得积分20
6秒前
6秒前
李爱国应助知秋采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
烟花应助望山云雾采纳,获得10
7秒前
song发布了新的文献求助10
8秒前
CodeCraft应助研友_8WMxKn采纳,获得10
9秒前
铃溪完成签到,获得积分10
9秒前
9秒前
minbio完成签到,获得积分20
9秒前
AsRNA完成签到,获得积分10
10秒前
董媛媛发布了新的文献求助10
10秒前
10秒前
10秒前
如果再谨慎点完成签到 ,获得积分20
10秒前
huyu发布了新的文献求助10
10秒前
HOAN应助粥粥采纳,获得30
10秒前
李健应助天气晴朗采纳,获得10
11秒前
11秒前
丫丫发布了新的文献求助10
11秒前
止戈发布了新的文献求助10
11秒前
求助人员发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482