LIMO-GCN: a linear model-integrated graph convolutional network for predicting Alzheimer disease genes

计算机科学 过度拟合 线性模型 图形 非线性系统 线性 线性关系 机器学习 人工智能 数据挖掘 算法 理论计算机科学 数学 人工神经网络 统计 物理 量子力学
作者
Cui-Xiang Lin,Hong‐Dong Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1)
标识
DOI:10.1093/bib/bbae611
摘要

Abstract Alzheimer’s disease (AD) is a complex disease with its genetic etiology not fully understood. Gene network-based methods have been proven promising in predicting AD genes. However, existing approaches are limited in their ability to model the nonlinear relationship between networks and disease genes, because (i) any data can be theoretically decomposed into the sum of a linear part and a nonlinear part, (ii) the linear part can be best modeled by a linear model since a nonlinear model is biased and can be easily overfit, and (iii) existing methods do not separate the linear part from the nonlinear part when building the disease gene prediction model. To address the limitation, we propose linear model-integrated graph convolutional network (LIMO-GCN), a generic disease gene prediction method that models the data linearity and nonlinearity by integrating a linear model with GCN. The reason to use GCN is that it is by design naturally suitable to dealing with network data, and the reason to integrate a linear model is that the linearity in the data can be best modeled by a linear model. The weighted sum of the prediction of the two components is used as the final prediction of LIMO-GCN. Then, we apply LIMO-GCN to the prediction of AD genes. LIMO-GCN outperforms the state-of-the-art approaches including GCN, network-wide association studies, and random walk. Furthermore, we show that the top-ranked genes are significantly associated with AD based on molecular evidence from heterogeneous genomic data. Our results indicate that LIMO-GCN provides a novel method for prioritizing AD genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚意完成签到,获得积分10
刚刚
任晴完成签到,获得积分10
1秒前
orixero应助ZMH采纳,获得30
1秒前
纪元龙完成签到,获得积分10
1秒前
初空月儿完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
wzy完成签到,获得积分10
3秒前
aaronpancn完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
小马完成签到,获得积分10
3秒前
高凯璇完成签到,获得积分10
4秒前
动漫大师发布了新的文献求助10
4秒前
4秒前
4秒前
Liujiawen0008发布了新的文献求助10
5秒前
sciexplorer发布了新的文献求助10
5秒前
5秒前
zwbzwb12341234完成签到,获得积分10
5秒前
6秒前
大个应助麋路采纳,获得10
6秒前
6秒前
凯云完成签到,获得积分10
6秒前
正直的语琴完成签到,获得积分10
6秒前
6秒前
车灵波发布了新的文献求助30
7秒前
十一完成签到,获得积分10
8秒前
wzy发布了新的文献求助10
8秒前
秋子发布了新的文献求助10
8秒前
韩hqf发布了新的文献求助10
8秒前
lianggh发布了新的文献求助10
9秒前
9秒前
WZC发布了新的文献求助10
10秒前
在水一方应助yyt采纳,获得10
10秒前
10秒前
少年完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
ssss发布了新的文献求助10
11秒前
Liujiawen0008完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666902
求助须知:如何正确求助?哪些是违规求助? 3225730
关于积分的说明 9765171
捐赠科研通 2935586
什么是DOI,文献DOI怎么找? 1607790
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302