Identifying the superimposed orbital angular momentum modes for delivering information by a Resnet-based atmospheric turbulence intensity extraction

物理 角动量 大气湍流 强度(物理) 湍流 萃取(化学) 动量(技术分析) 天文 计算物理学 光学 经典力学 气象学 化学 财务 色谱法 经济
作者
Xiaohui Wang,Yang Wang,Dongdong Deng,Xinchen Ji,Hui Zhang,L. Xu,Jiawei Rui,Shuai Mao,Yingxiong Song,Fufei Pang,Liyun Zhuang,Yang Song,Xiaofeng He,Chao Wang,Tiezhu Zhu,Yang Yudong
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (12): 125122-125122
标识
DOI:10.1088/1402-4896/ad92c4
摘要

Abstract Vortex light carrying orbital angular momentum (OAM) is a beam with a helical phase structure. The OAM light has great potential in the field of communication, due to the fact that it can greatly improve the efficiency and capacity of information transmission. One of the popular information propagation methods is coding and decoding by different single OAM light or combined multiple OAM lights. However, Laguerre–Gaussian (LG) beams (LGB) carrying OAM, which is a classical vortex light, are prone to distortion of intensity under atmospheric turbulence (AT) disturbances. Due to the influence of AT, the effective recognition of the OAM mode in a free space becomes an important challenge for information propagation. For mitigating the influence of AT, a scheme combining AT extraction and OAM modes recognition is proposed, which can efficiently identify both AT intensity and OAM modes. A 99 % identification accuracy of AT can be reached by the proposed scheme. Besides, the obtained results also show that the recognition rate of OAM modes is greatly improved after the introduction of AT extraction module, especially under strong turbulence conditions. Compared to direct-mode-identification method without extracting AT, the recognition accuracy can be improved by 8 % and 3 % when the AT intensity is 1 × 10 13 and 5 × 10 14 m 2 / 3 , respectively. Consequently, the proposed scheme can be used to identify the OAM modes with a high accuracy, which is beneficial to OAM coding and decoding in an OAM-based communication system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lybin发布了新的文献求助10
刚刚
酷炫曼寒完成签到,获得积分20
2秒前
2秒前
Nanozyme发布了新的文献求助10
3秒前
徐反宁完成签到,获得积分10
3秒前
今后应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
4秒前
大脸兔狲完成签到 ,获得积分10
7秒前
8秒前
鲤鱼宛凝完成签到,获得积分10
9秒前
慕青应助Dr.Great采纳,获得10
9秒前
优雅的橘子完成签到,获得积分10
11秒前
13秒前
无限水杯完成签到,获得积分10
13秒前
wuyanbiaoqiao应助dangdang601采纳,获得100
14秒前
云淡风轻发布了新的文献求助10
14秒前
nature完成签到 ,获得积分10
18秒前
星你发布了新的文献求助10
18秒前
漂亮夏兰完成签到 ,获得积分10
18秒前
甘瓜完成签到,获得积分10
21秒前
21秒前
23秒前
26秒前
wanci应助可靠的难胜采纳,获得10
27秒前
28秒前
大佬发布了新的文献求助10
29秒前
31秒前
5114de完成签到,获得积分10
32秒前
善学以致用应助林也行采纳,获得10
34秒前
啾咪发布了新的文献求助10
34秒前
Owen应助清澈水眸采纳,获得10
35秒前
Xu发布了新的文献求助10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724