亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalized Recommendation Algorithm for Optimizing English Vocabulary Learning Using Neural Networks

人工神经网络 计算机科学 词汇 人工智能 机器学习 算法 语音识别 语言学 哲学
作者
Dongliang Qi
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540227x
摘要

Learning vocabulary is the process of gaining the foundational knowledge needed to acquire a second language. The majority of children learn vocabulary by accident when they are exposed to words indirectly at home and school by chatting and listening, reading aloud from books, and engaging in extensive independent reading. Accurate spelling, precise pronunciation, appropriate word usage, and efficient vocabulary retention or remembering are among the challenges associated with acquiring English vocabulary. In this, we proposed a novel student psychology optimized intellectual deep neural network (SPO-IDNN) for personalized recommendations of English vocabulary learning. Optimizing feature learning and temporal information processing enhances the model’s capacity to acquire language across various textual contexts. In this study, we collected the data from the wiki dataset used to classify English words. Data preprocessing techniques that preprocess the gathered text using stemming, lemmatization, punctuation, special character removal, stop word removal, and case normalization improve understanding and memory of English vocabulary acquisition. TF-IDF facilitates the learning of English vocabulary to find essential words in documents. The classification task, considering temporal dependencies, was achieved using our proposed model. The proposed method is compared to the other traditional algorithms. Implemented in Python, our approach focuses on English vocabulary learning performance metrics. The overall performance in terms of recall (0.98), accuracy (0.97), and F1-score (0.96). The result shows the proposed method has achieved better performance. English speakers will benefit from this study’s efficient and accurate natural language processing technologies, which will facilitate language application and understanding while also enhancing vocabulary development and comprehension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Gryphon采纳,获得10
5秒前
46秒前
善学以致用应助yf采纳,获得10
50秒前
51秒前
Gryphon发布了新的文献求助10
51秒前
Gryphon完成签到,获得积分10
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
这橘不甜发布了新的文献求助10
1分钟前
愉快的丹彤完成签到 ,获得积分10
2分钟前
2分钟前
mengran发布了新的文献求助30
2分钟前
mengran完成签到,获得积分10
2分钟前
万能图书馆应助mengran采纳,获得30
2分钟前
Double发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助ccj采纳,获得10
3分钟前
4分钟前
4分钟前
魔幻的妖丽完成签到 ,获得积分10
5分钟前
123完成签到 ,获得积分10
5分钟前
5分钟前
Nichols完成签到,获得积分10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
轻松戎发布了新的文献求助10
6分钟前
华仔应助轻松戎采纳,获得10
6分钟前
飞天大南瓜完成签到,获得积分10
7分钟前
8分钟前
Frecklesss发布了新的文献求助10
8分钟前
Frecklesss完成签到,获得积分20
8分钟前
Koi关闭了Koi文献求助
8分钟前
8分钟前
9分钟前
么西么西发布了新的文献求助10
9分钟前
Double发布了新的文献求助10
9分钟前
所所应助罗乐天采纳,获得10
9分钟前
冷傲半邪完成签到,获得积分10
10分钟前
yf完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346803
求助须知:如何正确求助?哪些是违规求助? 4481209
关于积分的说明 13947427
捐赠科研通 4379227
什么是DOI,文献DOI怎么找? 2406250
邀请新用户注册赠送积分活动 1398834
关于科研通互助平台的介绍 1371710