Personalized Recommendation Algorithm for Optimizing English Vocabulary Learning Using Neural Networks

人工神经网络 计算机科学 词汇 人工智能 机器学习 算法 语音识别 语言学 哲学
作者
Dengrong Qi
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540227x
摘要

Learning vocabulary is the process of gaining the foundational knowledge needed to acquire a second language. The majority of children learn vocabulary by accident when they are exposed to words indirectly at home and school by chatting and listening, reading aloud from books, and engaging in extensive independent reading. Accurate spelling, precise pronunciation, appropriate word usage, and efficient vocabulary retention or remembering are among the challenges associated with acquiring English vocabulary. In this, we proposed a novel student psychology optimized intellectual deep neural network (SPO-IDNN) for personalized recommendations of English vocabulary learning. Optimizing feature learning and temporal information processing enhances the model’s capacity to acquire language across various textual contexts. In this study, we collected the data from the wiki dataset used to classify English words. Data preprocessing techniques that preprocess the gathered text using stemming, lemmatization, punctuation, special character removal, stop word removal, and case normalization improve understanding and memory of English vocabulary acquisition. TF-IDF facilitates the learning of English vocabulary to find essential words in documents. The classification task, considering temporal dependencies, was achieved using our proposed model. The proposed method is compared to the other traditional algorithms. Implemented in Python, our approach focuses on English vocabulary learning performance metrics. The overall performance in terms of recall (0.98), accuracy (0.97), and F1-score (0.96). The result shows the proposed method has achieved better performance. English speakers will benefit from this study’s efficient and accurate natural language processing technologies, which will facilitate language application and understanding while also enhancing vocabulary development and comprehension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyi完成签到 ,获得积分10
刚刚
馅饼完成签到,获得积分10
1秒前
3秒前
3秒前
feng发布了新的文献求助10
7秒前
Lorain完成签到,获得积分20
9秒前
wmy发布了新的文献求助10
10秒前
where完成签到,获得积分10
25秒前
孟寐以求完成签到 ,获得积分10
26秒前
Titi完成签到 ,获得积分10
32秒前
where发布了新的文献求助10
34秒前
冷冷完成签到 ,获得积分10
35秒前
领导范儿应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
杨yang完成签到 ,获得积分10
36秒前
不想洗碗完成签到 ,获得积分10
53秒前
温馨完成签到 ,获得积分10
1分钟前
王海海完成签到 ,获得积分10
1分钟前
1分钟前
香香丿完成签到 ,获得积分10
1分钟前
rgjipeng完成签到,获得积分10
1分钟前
sfwrbh发布了新的文献求助10
1分钟前
LUCKY完成签到 ,获得积分10
1分钟前
布蓝图完成签到 ,获得积分10
1分钟前
贪玩的网络完成签到 ,获得积分10
1分钟前
西瓜霜完成签到 ,获得积分10
1分钟前
陈陈完成签到 ,获得积分10
1分钟前
1分钟前
花誓lydia完成签到 ,获得积分10
1分钟前
流星雨完成签到 ,获得积分10
1分钟前
marc107完成签到,获得积分10
1分钟前
xuan完成签到,获得积分10
1分钟前
喜悦向日葵完成签到 ,获得积分10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
Hello应助sunshine采纳,获得10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
缓慢的灵枫完成签到 ,获得积分10
1分钟前
Nick完成签到,获得积分0
1分钟前
1分钟前
彭于晏应助陶醉的笑槐采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251