Enhancing of uniaxial compressive strength of travertine rock prediction through machine learning and multivariate analysis

施密特锤 抗压强度 岩土工程 参数统计 地质学 多孔性 材料科学 数学 复合材料 统计
作者
Dima A. Husein Malkawi,Samer R. Rabab’ah,Abdulla A. Sharo,Hussein Aldeeky,Ghada K. Al-Souliman,Haitham O. Saleh
出处
期刊:Results in engineering [Elsevier BV]
卷期号:20: 101593-101593 被引量:9
标识
DOI:10.1016/j.rineng.2023.101593
摘要

Indirect methods for predicting material properties in rock engineering are vital for assessing elastic mechanical properties. Accurately predicting material properties holds significant importance in rock and geotechnical engineering, as it strongly influences decisions about the design and construction of infrastructure projects. Uniaxial compressive strength (UCS) is one of the most important elastic mechanical properties for understanding how rocks and geological formations respond to stress and deformation. However, the standard UCS test faces several challenges, including its destructive nature, high costs, time-consuming procedures, and the requirement for high-quality samples. Therefore, there is a growing demand for indirect methods to estimate UCS, which are invaluable tools for evaluating the elastic mechanical properties of materials. The study aimed to comprehensively analyze the relationships between UCS of travertine rock samples collected from the Dead Sea and Jordan Valley formations and seven different rock indices by utilizing parametric and non-parametric methods. The laboratory results indicate that the study area's travertine rock possesses high-quality and desirable properties. The results reveal that certain rock indices, such as Schmidt hammer, Leeb rebound hardness, and Point Load, strongly correlate with Uniaxial Compressive Strength (UCS). Conversely, other indices, specifically dry density, absorption, pulse velocity, and porosity, exhibit a considerably weaker or very weak relationship with UCS. The paper employs three machine learning techniques, namely the Tree model, k-nearest neighbors (KNN), and Artificial Neural Networks (ANN), to develop predictive models for rock strength. The models were trained on a dataset of rock properties and corresponding mechanical strength values. The study's results revealed that the M5 tree model is the most suitable method for predicting UCS. It demonstrates robust performance across a spectrum of metrics and boasts low prediction errors. Following the M5 tree model are the KNN, ANN, and regression methods in descending order of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫元风发布了新的文献求助10
刚刚
cxq完成签到 ,获得积分10
1秒前
不落完成签到,获得积分10
3秒前
xxr1111完成签到,获得积分10
3秒前
dynamo完成签到,获得积分10
3秒前
瑶啊瑶完成签到,获得积分10
5秒前
sye发布了新的文献求助10
6秒前
NexusExplorer应助研友_Zlx3aZ采纳,获得10
7秒前
长乐完成签到,获得积分10
9秒前
Summeryz920完成签到,获得积分10
9秒前
10秒前
14秒前
sting发布了新的文献求助10
15秒前
小哩笑笑发布了新的文献求助100
15秒前
Aman发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
CodeCraft应助xiao采纳,获得10
22秒前
薄新茹发布了新的文献求助10
23秒前
bbh发布了新的文献求助30
27秒前
高兴的风华完成签到,获得积分10
27秒前
Lucas应助火龙果采纳,获得10
29秒前
33秒前
35秒前
天天快乐应助Wencheng Ma采纳,获得10
36秒前
sakuramrlu发布了新的文献求助10
37秒前
甜甜信封完成签到,获得积分10
39秒前
罐罐关注了科研通微信公众号
40秒前
火龙果发布了新的文献求助10
40秒前
40秒前
情怀应助homer采纳,获得10
42秒前
ddli发布了新的文献求助10
43秒前
可爱的函函应助zpp采纳,获得10
44秒前
JamesPei应助努力采纳,获得10
46秒前
JamesPei应助bbh采纳,获得30
46秒前
夜雨完成签到 ,获得积分10
47秒前
DOC发布了新的文献求助10
48秒前
哈哈驳回了打打应助
49秒前
任性唇膏发布了新的文献求助10
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994202
求助须知:如何正确求助?哪些是违规求助? 3534683
关于积分的说明 11266214
捐赠科研通 3274605
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724