Enhancing of uniaxial compressive strength of travertine rock prediction through machine learning and multivariate analysis

施密特锤 抗压强度 岩土工程 参数统计 地质学 多孔性 材料科学 数学 复合材料 统计
作者
Dima A. Husein Malkawi,Samer R. Rabab’ah,Abdulla A. Sharo,Hussein Aldeeky,Ghada K. Al-Souliman,Haitham O. Saleh
出处
期刊:Results in engineering [Elsevier]
卷期号:20: 101593-101593 被引量:9
标识
DOI:10.1016/j.rineng.2023.101593
摘要

Indirect methods for predicting material properties in rock engineering are vital for assessing elastic mechanical properties. Accurately predicting material properties holds significant importance in rock and geotechnical engineering, as it strongly influences decisions about the design and construction of infrastructure projects. Uniaxial compressive strength (UCS) is one of the most important elastic mechanical properties for understanding how rocks and geological formations respond to stress and deformation. However, the standard UCS test faces several challenges, including its destructive nature, high costs, time-consuming procedures, and the requirement for high-quality samples. Therefore, there is a growing demand for indirect methods to estimate UCS, which are invaluable tools for evaluating the elastic mechanical properties of materials. The study aimed to comprehensively analyze the relationships between UCS of travertine rock samples collected from the Dead Sea and Jordan Valley formations and seven different rock indices by utilizing parametric and non-parametric methods. The laboratory results indicate that the study area's travertine rock possesses high-quality and desirable properties. The results reveal that certain rock indices, such as Schmidt hammer, Leeb rebound hardness, and Point Load, strongly correlate with Uniaxial Compressive Strength (UCS). Conversely, other indices, specifically dry density, absorption, pulse velocity, and porosity, exhibit a considerably weaker or very weak relationship with UCS. The paper employs three machine learning techniques, namely the Tree model, k-nearest neighbors (KNN), and Artificial Neural Networks (ANN), to develop predictive models for rock strength. The models were trained on a dataset of rock properties and corresponding mechanical strength values. The study's results revealed that the M5 tree model is the most suitable method for predicting UCS. It demonstrates robust performance across a spectrum of metrics and boasts low prediction errors. Following the M5 tree model are the KNN, ANN, and regression methods in descending order of performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L112233发布了新的文献求助10
1秒前
2秒前
灵巧冷菱完成签到,获得积分10
4秒前
儿学化学打断腿完成签到,获得积分10
5秒前
shilong.yang完成签到,获得积分10
5秒前
刘卫朋完成签到,获得积分10
5秒前
华仔应助LiBo采纳,获得10
6秒前
6秒前
科研通AI2S应助自然白安采纳,获得10
9秒前
9秒前
LJYang发布了新的文献求助30
14秒前
15秒前
李健的小迷弟应助saisyo采纳,获得10
16秒前
完美世界应助康康采纳,获得10
16秒前
明亮的智宸完成签到,获得积分10
16秒前
Who发布了新的文献求助10
16秒前
18秒前
影子1127发布了新的文献求助10
18秒前
抱小熊睡觉应助xiaobai采纳,获得10
20秒前
脑洞疼应助洁洁酱采纳,获得10
22秒前
24秒前
SciGPT应助Who采纳,获得10
25秒前
27秒前
27秒前
乔qiqiqiqi完成签到,获得积分10
28秒前
影子1127完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
z123发布了新的文献求助20
29秒前
30秒前
乔qiqiqiqi发布了新的文献求助10
31秒前
yang发布了新的文献求助20
31秒前
33秒前
35秒前
35秒前
GZ完成签到,获得积分10
35秒前
包包完成签到 ,获得积分10
36秒前
情怀应助Yuanyuan_Helen采纳,获得10
36秒前
凡趣智简发布了新的文献求助10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462