亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing of uniaxial compressive strength of travertine rock prediction through machine learning and multivariate analysis

施密特锤 抗压强度 岩土工程 参数统计 地质学 多孔性 材料科学 数学 复合材料 统计
作者
Dima A. Husein Malkawi,Samer R. Rabab’ah,Abdulla A. Sharo,Hussein Aldeeky,Ghada K. Al-Souliman,Haitham O. Saleh
出处
期刊:Results in engineering [Elsevier]
卷期号:20: 101593-101593 被引量:9
标识
DOI:10.1016/j.rineng.2023.101593
摘要

Indirect methods for predicting material properties in rock engineering are vital for assessing elastic mechanical properties. Accurately predicting material properties holds significant importance in rock and geotechnical engineering, as it strongly influences decisions about the design and construction of infrastructure projects. Uniaxial compressive strength (UCS) is one of the most important elastic mechanical properties for understanding how rocks and geological formations respond to stress and deformation. However, the standard UCS test faces several challenges, including its destructive nature, high costs, time-consuming procedures, and the requirement for high-quality samples. Therefore, there is a growing demand for indirect methods to estimate UCS, which are invaluable tools for evaluating the elastic mechanical properties of materials. The study aimed to comprehensively analyze the relationships between UCS of travertine rock samples collected from the Dead Sea and Jordan Valley formations and seven different rock indices by utilizing parametric and non-parametric methods. The laboratory results indicate that the study area's travertine rock possesses high-quality and desirable properties. The results reveal that certain rock indices, such as Schmidt hammer, Leeb rebound hardness, and Point Load, strongly correlate with Uniaxial Compressive Strength (UCS). Conversely, other indices, specifically dry density, absorption, pulse velocity, and porosity, exhibit a considerably weaker or very weak relationship with UCS. The paper employs three machine learning techniques, namely the Tree model, k-nearest neighbors (KNN), and Artificial Neural Networks (ANN), to develop predictive models for rock strength. The models were trained on a dataset of rock properties and corresponding mechanical strength values. The study's results revealed that the M5 tree model is the most suitable method for predicting UCS. It demonstrates robust performance across a spectrum of metrics and boasts low prediction errors. Following the M5 tree model are the KNN, ANN, and regression methods in descending order of performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助务实的访卉采纳,获得10
1秒前
机灵柚子应助纯真抽屉采纳,获得50
2秒前
fml完成签到,获得积分10
6秒前
8秒前
WTF完成签到,获得积分10
9秒前
11秒前
脑洞疼应助123采纳,获得30
13秒前
Hcc完成签到 ,获得积分10
14秒前
16秒前
16秒前
汉堡包应助冷艳的小懒虫采纳,获得10
19秒前
19秒前
20秒前
李爱国应助Anxietymaker采纳,获得10
22秒前
怕黑鲂完成签到 ,获得积分10
23秒前
23秒前
不知终日梦为鱼完成签到,获得积分10
26秒前
123456发布了新的文献求助10
26秒前
26秒前
小蘑菇应助123采纳,获得30
29秒前
量子星尘发布了新的文献求助10
29秒前
moumou完成签到 ,获得积分10
30秒前
37秒前
汪海洋完成签到 ,获得积分10
38秒前
Crisp完成签到 ,获得积分10
39秒前
大个应助LSL丶采纳,获得10
40秒前
42秒前
哈哈哈哈哈哈完成签到,获得积分20
42秒前
orange完成签到 ,获得积分10
43秒前
欣欣发布了新的文献求助10
43秒前
思源应助123采纳,获得10
45秒前
Yvonne发布了新的文献求助10
47秒前
李健应助犹豫帆布鞋采纳,获得10
50秒前
51秒前
55秒前
Anxietymaker发布了新的文献求助10
55秒前
55秒前
Criminology34应助科研通管家采纳,获得10
56秒前
56秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657768
求助须知:如何正确求助?哪些是违规求助? 4812247
关于积分的说明 15080301
捐赠科研通 4815972
什么是DOI,文献DOI怎么找? 2577008
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490548