Enhancing of uniaxial compressive strength of travertine rock prediction through machine learning and multivariate analysis

施密特锤 抗压强度 岩土工程 参数统计 地质学 多孔性 材料科学 数学 复合材料 统计
作者
Dima A. Husein Malkawi,Samer R. Rabab’ah,Abdulla A. Sharo,Hussein Aldeeky,Ghada K. Al-Souliman,Haitham O. Saleh
出处
期刊:Results in engineering [Elsevier BV]
卷期号:20: 101593-101593 被引量:9
标识
DOI:10.1016/j.rineng.2023.101593
摘要

Indirect methods for predicting material properties in rock engineering are vital for assessing elastic mechanical properties. Accurately predicting material properties holds significant importance in rock and geotechnical engineering, as it strongly influences decisions about the design and construction of infrastructure projects. Uniaxial compressive strength (UCS) is one of the most important elastic mechanical properties for understanding how rocks and geological formations respond to stress and deformation. However, the standard UCS test faces several challenges, including its destructive nature, high costs, time-consuming procedures, and the requirement for high-quality samples. Therefore, there is a growing demand for indirect methods to estimate UCS, which are invaluable tools for evaluating the elastic mechanical properties of materials. The study aimed to comprehensively analyze the relationships between UCS of travertine rock samples collected from the Dead Sea and Jordan Valley formations and seven different rock indices by utilizing parametric and non-parametric methods. The laboratory results indicate that the study area's travertine rock possesses high-quality and desirable properties. The results reveal that certain rock indices, such as Schmidt hammer, Leeb rebound hardness, and Point Load, strongly correlate with Uniaxial Compressive Strength (UCS). Conversely, other indices, specifically dry density, absorption, pulse velocity, and porosity, exhibit a considerably weaker or very weak relationship with UCS. The paper employs three machine learning techniques, namely the Tree model, k-nearest neighbors (KNN), and Artificial Neural Networks (ANN), to develop predictive models for rock strength. The models were trained on a dataset of rock properties and corresponding mechanical strength values. The study's results revealed that the M5 tree model is the most suitable method for predicting UCS. It demonstrates robust performance across a spectrum of metrics and boasts low prediction errors. Following the M5 tree model are the KNN, ANN, and regression methods in descending order of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单忘幽完成签到,获得积分10
1秒前
哎咦随风起完成签到,获得积分10
1秒前
2秒前
顾矜应助wa采纳,获得10
2秒前
一一发布了新的文献求助10
2秒前
一沙发布了新的文献求助10
3秒前
科研通AI5应助TEMPO采纳,获得10
3秒前
斯文静竹完成签到,获得积分10
4秒前
Aquilus发布了新的文献求助10
4秒前
1z2x3s发布了新的文献求助10
5秒前
英姑应助滚滚采纳,获得10
5秒前
酷波er应助无辜乘云采纳,获得10
6秒前
hanzhipad应助phenix_y采纳,获得10
7秒前
皮蛋robin汤完成签到 ,获得积分10
9秒前
金美发布了新的文献求助10
10秒前
10秒前
10秒前
小高加油发布了新的文献求助10
10秒前
11秒前
一事无成的研一完成签到,获得积分20
11秒前
11秒前
12秒前
14秒前
Sean完成签到,获得积分10
14秒前
wa发布了新的文献求助10
15秒前
ZLWF发布了新的文献求助10
16秒前
小叶子发布了新的文献求助10
16秒前
科研小白发布了新的文献求助10
18秒前
18秒前
潜行者完成签到 ,获得积分10
19秒前
高挑的初蝶完成签到,获得积分10
19秒前
yagami发布了新的文献求助10
20秒前
21秒前
杨文慧发布了新的文献求助10
21秒前
阿钰完成签到,获得积分10
22秒前
22秒前
充电宝应助shan采纳,获得10
22秒前
我艾吃饭发布了新的文献求助10
22秒前
24秒前
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059