Survival analysis and nomogram for pulmonary sarcomatoid carcinoma: an SEER analysis and external validation

列线图 医学 比例危险模型 肿瘤科 接收机工作特性 队列 内科学 肺癌 监测、流行病学和最终结果 阶段(地层学) 流行病学 癌症登记处 古生物学 生物
作者
Weishuai Wu,Lijing Zheng,Feng Li,Hongchao Chen,Chen Huang,Qianshun Chen,Yidan Lin,Xunyu Xu,Yongmei Dai
出处
期刊:BMJ Open [BMJ]
卷期号:13 (10): e072260-e072260
标识
DOI:10.1136/bmjopen-2023-072260
摘要

Objective Uncommon and particularly deadly, pulmonary sarcomatoid carcinoma (PSC) is an aggressive type of lung cancer. This research aimed to create a risk categorisation and nomogram to forecast the overall survival (OS) of patients with PSC. Methods To develop the model, 899 patients with PSC were taken from the Surveillance, Epidemiology, and End Results database from the USA. We also used an exterior verification sample of 34 individuals with PSC from Fujian Provincial Hospital in China. The Cox regression hazards model and stepwise regression analysis were done to screen factors in developing a nomogram. The nomogram’s ability to discriminate was measured employing the area under a time-dependent receiver operating characteristic curve (AUC), the concordance index (C-index) and the calibration curve. Decision curve analysis (DCA) and integrated discrimination improvement (IDI) were used to evaluate the nomogram to the tumour–node–metastasis categorisation developed by the American Joint Committee on Cancer (AJCC-TNM), eighth edition, and an additional sample confirmed the nomogram’s accuracy. We further developed a risk assessment system based on nomogram scores. Results Six independent variables, age, sex, primary tumour site, pathological group, tumour–node–metastasis (TNM) clinical stage and therapeutic technique, were chosen to form the nomogram’s basis. The nomogram indicated good discriminative ability with the C-index (0.763 in the training cohort and 0.746 in the external validation cohort) and time-dependent AUC. Calibration plots demonstrated high congruence between the prediction model and real-world evidence in both the validation and training cohorts. Nomogram outperformed the AJCC-TNM eighth edition classification in both DCA and IDI. Patients were classified into subgroups according to their risk ratings, and significant differences in OS were observed between them (p<0.001). Conclusion We conducted a survival analysis and nomogram for PSC. This developed nomogram holds potential to serve as an efficient tool for clinicians in prognostic modelling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的牛二完成签到 ,获得积分10
1秒前
合适的半青应助123采纳,获得10
1秒前
悟川完成签到 ,获得积分10
2秒前
3秒前
4秒前
甜筒发布了新的文献求助10
4秒前
充电宝应助clean采纳,获得10
5秒前
happy发布了新的文献求助10
6秒前
6秒前
诸笑白发布了新的文献求助10
8秒前
9秒前
landolu发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
耍酷的夏云关注了科研通微信公众号
13秒前
Lynnyue完成签到,获得积分10
13秒前
if发布了新的文献求助100
15秒前
15秒前
16秒前
weven完成签到 ,获得积分10
16秒前
17秒前
叶落花开应助Anquan采纳,获得10
20秒前
车小帅完成签到,获得积分10
22秒前
AI倩完成签到 ,获得积分10
25秒前
25秒前
25秒前
顾矜应助好玩和有趣采纳,获得10
26秒前
萊以托尔福完成签到,获得积分10
26秒前
平淡思雁完成签到,获得积分10
27秒前
西兰花的科研小助手完成签到,获得积分10
30秒前
小猫多鱼发布了新的文献求助10
30秒前
呆呆完成签到,获得积分10
31秒前
忆韵发布了新的文献求助10
31秒前
善良的灵羊完成签到 ,获得积分10
31秒前
33秒前
33秒前
鸠摩智完成签到,获得积分10
34秒前
高贵绿草完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849