点云
计算机科学
分割
保险丝(电气)
人工智能
计算
计算机视觉
点(几何)
图像分割
比例(比率)
采样(信号处理)
领域(数学)
尺度空间分割
云计算
融合
模式识别(心理学)
算法
数学
工程类
滤波器(信号处理)
操作系统
电气工程
物理
量子力学
哲学
语言学
纯数学
几何学
作者
Zhiyuan Wang,Xuezhi Xiang
标识
DOI:10.1109/icma57826.2023.10216036
摘要
With the rapid development of 3D sensors, point cloud semantic segmentation methods have gradually become important components of 3D scene understanding. Considering the limitation of the local receptive field, we design dilate sampling, which improves the segmentation performance without increasing the computation. Furthermore, we fuse information from multiple scales in the decoder to recognize objects of various sizes. After experiments, we obtain comparable results on the S3DIS dataset and Toronto3D dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI