LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of Vision & Language Models

过度拟合 计算机科学 人工智能 稳健性(进化) 自然语言处理 机器学习 编码(集合论) 语言模型 人工神经网络 生物化学 基因 集合(抽象数据类型) 化学 程序设计语言
作者
Adrian Bulat,Georgios Tzimiropoulos
标识
DOI:10.1109/cvpr52729.2023.02225
摘要

Soft prompt learning has recently emerged as one of the methods of choice for adapting V&L models to a downstream task using a few training examples. However, current methods significantly overfit the training data, suffering from large accuracy degradation when tested on unseen classes from the same domain. To this end, in this paper, we make the following 4 contributions: (1) To alleviate base class overfitting, we propose a novel Language- Aware Soft Prompting (LASP) learning method by means of a text-to-text cross-entropy loss that maximizes the probability of the learned prompts to be correctly classified with respect to pre-defined hand-crafted textual prompts. (2) To increase the representation capacity of the prompts, we propose grouped LASP where each group of prompts is optimized with respect to a separate subset of textual prompts. (3) We identify a visual-language misalignment introduced by prompt learning and LASP, and more importantly, propose a re-calibration mechanism to address it. (4) We show that LASP is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available, further increasing the robustness of the learned prompts. Through evaluations on 11 datasets, we show that our approach (a) significantly outperforms all prior works on soft prompting, and (b) matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets. Code will be made available here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lunjiang发布了新的文献求助10
刚刚
Lucas应助喽喽采纳,获得10
刚刚
我是老大应助喽喽采纳,获得30
刚刚
1秒前
1秒前
方东完成签到,获得积分10
1秒前
李超完成签到,获得积分10
2秒前
2秒前
fd163c发布了新的文献求助20
3秒前
3秒前
城市公园完成签到,获得积分10
4秒前
4秒前
allofme发布了新的文献求助10
4秒前
大模型应助lagrange采纳,获得10
4秒前
EASA发布了新的文献求助10
4秒前
4秒前
猪猪hero应助与落采纳,获得10
4秒前
5秒前
苗松发布了新的文献求助10
5秒前
5秒前
空空留遗憾完成签到,获得积分10
5秒前
开放觅夏完成签到,获得积分10
5秒前
SHAO应助畅快代玉采纳,获得30
5秒前
6秒前
6秒前
Bear发布了新的文献求助10
6秒前
zlx发布了新的文献求助10
6秒前
HHHH完成签到,获得积分20
6秒前
7秒前
7秒前
tsjxs完成签到,获得积分10
7秒前
8秒前
8秒前
橙橙橙完成签到,获得积分10
8秒前
ll完成签到 ,获得积分10
8秒前
shulei发布了新的文献求助10
8秒前
9秒前
稳重道消发布了新的文献求助10
9秒前
活泼蜡烛发布了新的文献求助10
9秒前
你好好好发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052