LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of Vision & Language Models

过度拟合 计算机科学 人工智能 稳健性(进化) 自然语言处理 机器学习 编码(集合论) 语言模型 人工神经网络 集合(抽象数据类型) 程序设计语言 生物化学 化学 基因
作者
Adrian Bulat,Georgios Tzimiropoulos
标识
DOI:10.1109/cvpr52729.2023.02225
摘要

Soft prompt learning has recently emerged as one of the methods of choice for adapting V&L models to a downstream task using a few training examples. However, current methods significantly overfit the training data, suffering from large accuracy degradation when tested on unseen classes from the same domain. To this end, in this paper, we make the following 4 contributions: (1) To alleviate base class overfitting, we propose a novel Language- Aware Soft Prompting (LASP) learning method by means of a text-to-text cross-entropy loss that maximizes the probability of the learned prompts to be correctly classified with respect to pre-defined hand-crafted textual prompts. (2) To increase the representation capacity of the prompts, we propose grouped LASP where each group of prompts is optimized with respect to a separate subset of textual prompts. (3) We identify a visual-language misalignment introduced by prompt learning and LASP, and more importantly, propose a re-calibration mechanism to address it. (4) We show that LASP is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available, further increasing the robustness of the learned prompts. Through evaluations on 11 datasets, we show that our approach (a) significantly outperforms all prior works on soft prompting, and (b) matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets. Code will be made available here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peachsweet完成签到,获得积分10
刚刚
1秒前
深海鳕鱼完成签到,获得积分10
2秒前
繁荣的寻芹完成签到,获得积分10
3秒前
wll发布了新的文献求助10
4秒前
天真过客发布了新的文献求助10
4秒前
wenze发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
充电宝应助Song采纳,获得10
8秒前
烂漫的紫槐完成签到,获得积分10
9秒前
归海梦岚发布了新的文献求助30
10秒前
Jieh完成签到,获得积分10
10秒前
LJHUA完成签到,获得积分10
10秒前
XL完成签到,获得积分10
10秒前
红箭烟雨发布了新的文献求助10
11秒前
wangayting发布了新的文献求助30
11秒前
外向如冬完成签到 ,获得积分10
11秒前
俊逸的咖啡完成签到,获得积分10
18秒前
20秒前
完美世界应助wangayting采纳,获得30
20秒前
公孙朝雨完成签到,获得积分10
21秒前
无心的访蕊完成签到,获得积分10
22秒前
不配.给wufang的求助进行了留言
22秒前
司为发布了新的文献求助30
22秒前
22秒前
jjzy529完成签到,获得积分10
23秒前
阿盛发布了新的文献求助10
26秒前
星辰大海应助KhalilHao采纳,获得10
26秒前
搜集达人应助红箭烟雨采纳,获得10
26秒前
超人不会飞完成签到,获得积分10
27秒前
27秒前
雪儿发布了新的文献求助10
27秒前
27秒前
西域卧虎完成签到 ,获得积分10
31秒前
一往之前发布了新的文献求助10
32秒前
wangayting发布了新的文献求助30
32秒前
sapientia完成签到,获得积分10
34秒前
不驯完成签到 ,获得积分10
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046